
THE ACYCLIC ELEMENTS OF A PEANO SPACE 
A. D. WALLACE 

We suppose throughout that 5 is a Peano space. The notion of a 
cyclic element of such a space was introduced by G. T. Whyburn1 

and A -sets were introduced independently by W. L. Ayres2 and Why-
burn. Our present purpose is to consider a class of sets which may be 
regarded as the duals of cyclic elements. 

Let Q(S) denote the set of all cut-points and end-points of S.3 Then 
each component of Q(S) will be called an acyclic element of S. If p 
and q are two points of 5 then we write p~q to mean that no point 
separates p from q in S. A set will be termed acyclic if it contains no 
simple closed curve, cyclic if each pair of points is on a simple closed 
curve of the set. 

(i) Each cyclic element [acyclic element] is a cyclic [acyclic] A~set. 

PROOF. We prove only the second statement. Let F be an acyclic 
element, xnÇzF and suppose that If x is not in F then since 
F+x is connected we must have # £ 5 — Q(S), from the definition of F 
as a component of Q(S). Consequently x is a point of a cyclic element 
E of S. If (F+x) E contained only the point x then it would follow 
that F was contained in a single complementary domain R of E and 
thus x = F(R)=~R — R. Consequently x would be a cut-point, which 
is obviously impossible. We conclude that (F+x)-E is a nondegen-
erate connected set. I t is clear that no point of this set is an end-point 
and hence the set contains uncountably many cut-points. But no 
cyclic element contains more than a countable number of cut-points. 
We conclude that xÇ:F and hence F is closed. If F is not an -4-set 
there is an arc pxq which meets F in the set p+q. I t is manifest that 
no point separates p from q in S since F is connected. That is, p^q 
and hence p+qCZE, a true cyclic element. By the argument given 

1 See Kuratowski and Whyburn, Fundamenta Mathematicae, vol. 16 (1930), p. 
305. By a cyclic element we understand a nondegenerate set such that any two points 
lie on a simple closed curve and which is maximal relative to this property. This is 
not the definition given by Kuratowski and Whyburn but is equivalent (cf. G. T. 
Whyburn, this Bulletin, vol. 38 (1931), p. 429 and references given there) and is in 
fact Whyburn's original definition. It seems more natural in the present setting. 

2 See W. L. Ayres, this Bulletin, vol. 46 (1940), p. 794, for references. An A-set 
is a closed arc set. 

3 The terms cut-point and end-point without qualification refer to the space S. 
The proofs of all the statements concerning cyclic elements will be found in Kuratow­
ski and Whyburn. We assume considerable familiarity with this fundamental work. 
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above E would contain uncountably many cut-points, a contradic­
tion. Thus F is an A -set. Since each A -set is â Peano space it is easy 
to see that F contains no simple closed curve. 

(ii) In order that a set X of S be a cyclic element {acyclic element] it 
is necessary and sufficient that it be a connected set which is maximal 
relative to the property : If p and q are points of X then p~q [p non~q\. 

PROOF. We prove only the second statement. Let F be an acyclic 
element of 5, p, qÇ.F, and let / be the unique arc from p to q in F. 
Since F is a tree there is a point x on / which separates p from q in JF. 
But since F is an A -set we know that x separates p from q in 5 so 
that we have p n o n ^ g . Let F' be a connected set which contains F 
and which further contains at least one point which does not belong 
to F. Because F' is connected it contains a point p of 5 — Q(S) and 
hence a point of E, a cyclic element. It is easy to see that if F' and E 
have in common only the point p then p must be a cut-point, which 
is impossible since pÇ.S — 0 (5) . Hence F' E contains another point q. 
But since p, qÇzE we have p~q and by assumption p n o n ^ g because 
P, qÇ=.F'. Thus F = F'. The condition of the theorem is thus neces­
sary. It is not hard to see that the condition is sufficient. 

(iii) No point of a cyclic element E is an end-point or a cut-point of 
E while every point of an acyclic element F is either an end-point or a 
cut-point of F. 

We use the term element indiscriminately for cyclic or acyclic ele­
ment. 

(iv) The elements of 5 form a null sequence in the sense that for any 
positive number ô there are only finitely many whose diameters exceed S. 

PROOF. The result is known for cyclic elements. If there existed an 
infinite sequence of acyclic elements with diameters bounded from 
zero we could find an infinite subsequence with the same property 
and which converged to a nondegenerate continuum, that is, we have 
Fn—>X, d(X)^d>0. If a, è £ X and a non^fr, then we may write 
S = M+N, where a^M, bÇ^N, M- N = p, a cut-point. For all large n 
it follows that Fn meets both M and N and hence £ £ F n , contrary to 
the fact that Fi> Fj = 0 for i^j. We conclude that XQE, a cyclic ele­
ment. It is easy to see that we can find two points w, v&X—^Fn, 
since each acyclic element meets E in at most one point and the set X 
is uncountable. For n sufficiently large we can find arcs uu' and vv' 
which are disjoint and such that Fn-uu' = u'', Fn-vv' = vf. Since Fn is 
an A -set we can find an arc u'v' in Fn. Further we can find an arc uv 
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in E. The set uv+u'v'+uu' +vv' contains a simple closed curve / 
which has two points in Fn. Since we may suppose that J meets E 
in u+v we must have JQE and thus Fn meets E in more than one 
point. 

(v) A Peano space is the sum of its elements and no two have more 
than one point in common. No two acyclic elements meet. 

(vi) The decomposition of S into acyclic elements and points of 
S — Q(S) is upper semi-continuous. Thus the associated monotone trans­
formation TS = S' of S onto the hyper-space S' is topological on each 
cyclic element of S and the acyclic elements of S' are all degenerate. 

The results stated do not exhaust the list of dual properties but 
we have tried to give the most striking. I t appears improbable that 
the idea could be extended to non-locally connected spaces using the 
definitions given by Kelley,4 Moore,5 or Whyburn;6 or to the general­
izations due to Hall7 and Youngs.8 
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4 J. L. Kelley, Proceedings of the National Academy of Sciences, vol. 26 (1940), 
p. 192. 

5 R. L. Moore, Foundations of Point Set Theory, American Mathematical Society 
Colloquium Publications, vol. 13, New York, 1932. 

6 G. T. Whyburn, American Journal of Mathematics, vol. 56 (1934), p . 133. 
7 D. W. Hall, Transactions of this Society, vol. 47 (1940), p. 305. 
8 J. W. T. Youngs, American Journal of Mathematics, vol. 52 (1940), p. 449. 


