VALUE REGIONS FOR CONTINUED FRACTIONS!
W. T. SCOTT AND H. S. WALL

1. Introduction. In a recent paper? we showed that if a,, as, as, - -
lie in or upon the parabola

(1.1 |2] — %@ =3

then the continued fraction

1 as a3 a4

T 14+ 14+ 14--

converges if and only if the series Z[b,.l diverges, where b;=1,
@n=1/by_1b,, (n=2, 3, 4, - - - ), the series being considered as diver-

gent if some @, vanishes. Further, if 2 lies outside this parabola, the
periodic continued fraction

(1.2)

1 Z 2 Z b4

T+l +1 4141+,

in which z is the conjugate of z, diverges, so that the parabola (1.1)
is the “best” curve symmetrical with respect to the real axis.
The principal object of the present paper is to show that when

(1.3)

@3, a3, @4, - - -+ lie in or upon the parabola (1.1) then all the approxi-
mants of (1.2) lie in or upon the circle
(1.4) |z — 1] =1

If z; is any value of 2z not zero which is in or upon this circle, then there
is a value z in or upon the parabola (1.1) such that the value of the
continued fraction (1.3) is 2;, and therefore the circular domain is the
“best” domain.

2. Fundamental lemma. If we adopt the notation

1 Ani1 Anye

Uy = —

then
VY = ————————— n=123---.
1"I"a"n+1vn+1 e

! Presented to the Society under the title A geometrical method in the theory of con-
tinued fractions, November 22, 1940.

2 W. T. Scott and H. S. Wall, 4 converge theorem for continued fractions, Transac-
tions of this Society, vol. 47 (1940), pp. 155-172, p. 166. We refer to this paper later
as CT.
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Thus the continued fraction (1.2) may be regarded as a succession of
linear transformations of elements v, belonging to a set V, where the
transformations depend upon elements @, of a set U. This notion
leads us to formulate the following lemma.

LEMMA. If there exist in the complex plane sets of points U and V
such that
1) 1/(1+u)EV when uc U,
(i) 1/0+uw)EV when uc U, vET,
then every approximant of the continued fraction (1.2), beginning with
the second, lies in V when the elements as, as, a4, + + + liein U.

Let 4./B, denote the nth approximant of (1.2). Then, by (i),
A2/By=1/(14a:) €V when a, & U. Suppose now that we have veri-
fied that 4,/B,E€ V when the a,’s are in U. Then

An+1/Bn+1 = 1/(1 + a2v),

wherev=1/1+a3/14as/14+ - - - +a,41/1,andisin Vifas,a, - -+, Gpy1
are in U by our assumption. Hence, by (ii), Any1/Bay1 is in ¥V when
Qs, @3y + -+, Gpy1 are in U. This proves the lemma by induction.

We shall call the set U an element region for the continued fraction
(1.2). As as, as, a4, - - - range over U, the values of the approximants
of (1.2), and the values of (1.2), when convergent, constitute a set V
which we call the value region corresponding to the element region U.
These sets U and V satisfy the conditions of the lemma.

The element region U is called a convergence region for (1.2) if this
continued fraction remains convergent when the a¢,’s vary independ-
ently over U. A convergence region is necessarily bounded, for other-
wise the a,’s could be so chosen that the seriesZ[ b,,l would converge,
which implies divergence of the continued fraction by oscillation.

In the next section we shall obtain the value region for (1.2) when

the element region is the set of points in and upon the parabola given
by (1.1).

3. The parabola-circle theorem. If as, as, a4, - - - lie within or upon
the parabola (1.1) then all the approximants of the continued fraction
(1.2) lie within or upon the circle |z—1| =1. This circular region with
the point =0 removed is the value region corresponding to the parabolic
element region.

We seek first a region V, not necessarily the value region, corre-
sponding to the parabolic element region U, such that U and V satisfy
the conditions of the lemma of §2. If ]z] —R(2) =%, the continued
fraction (1.3) converges to the value
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— 14 2iy + (42 + 1 — 4y)12

w = -
2(x + iy)
where z=x+12y. If w=£-+419, then
1 2y
3.1 = ) = )
3D e T 1

when |z| —R(z) =%. Thus w traverses the circle |[w—1| =1 as 5 trav-
erses the parabola iz| —R(z)=%. From the nature of this mapping
of the parabola into the circle it is clear that as z ranges over the in-
terior of the parabola, w ranges over the whole interior of the circle.
The value w=0is not assumed for a finite value of z. These considera-
tions show that the region V which we seek must contain the region

(3.2) |z —1] =1, z=0.

We shall show that the conditions of the lemma are satisfied when U
is the parabolic region and V is the region (3.2).
fucU,vEV,u=§E+1in, v=x-+1y we have

(x= D491, pPSEtd

Let v1,=1/(14+uv) =p-+iq. Then the condition that v; shall lie in TV,
namely: (p —1)24¢2 =<1, is seen to reduce to the condition

(3.3) xf —yn 2 — &

The form of this inequality suggests that we examine the polars of
the point £-+4n relative to the hyperbola x2—y2= —1 when n2=£+1.
These polars form the one-parameter family of lines

(3.4 x(? =1 —m=—3%, — 0 <9<+ .

The envelope of this family is the circle (x —1)2+y2=1. Thus the line
xE—yn= —3% is tangent to the circle if £+447 is on the parabola. One
can easily see that if £+ is inside the parabola this line does not cut
the circle. Hence if £4-47 is in the parabola, and x+<y in the circle,
the points x+44y and the origin lie on one side of this line. It follows
that the inequality (3.3) holds.

We have proved that U and V, as defined, satisfy the condition (ii)
of the lemma. Since v=11isin V, it follows that (i) holds.

From the way in which we arrived at (3.2) as the locus of values
of the continued fraction (1.3) as 2z ranges over the parabola, and from
the observation that the value 0 cannot be assumed by (1.2) or any
of its approximants when the @,’s lie in the parabola, we now con-
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clude that (3.2) is the value region corresponding to the parabolic ele-
ment region. Our parabola-circle theorem is now completely proved.

It is interesting to note that the point of tangency of the line
xE—yn= —14% to the circle (x—1)24y2=1 when £+4147 is on the parab-
ola is given by

x=1/(2¢ + 1), y = 29/(2¢ + 1).
Hence we have again the projective mapping (3.1).

4. Circular bounds for the value of a continued fraction. Instead of
allowing as, as, a4, - - - to vary independently over the element region
U, one may suppose certain of the a,’s fixed in U and inquire as to the
region V in which the value of the continued fraction must lie when it
converges. In this way one may, for example, obtain an estimate for
the error committed in using a certain approximant instead of the
value of the continued fraction. We shall prove the following theorem.

THEOREM 4.1. If a3, as, @4, - - - lie within or upon the parabola (1.1),
then the sequence of even approximants of (1.2), which is necessarily
convergent, has a limit w which satisfies the inequality

@.1) a < b
' ad — b? =ad—b2,
where
as 11+03+d4l2
a=1+4 a41 — . ,
1+ds+04‘1+03+d412—ld4|2

_ ldzd3d4l ]
|1+03+d4|2—ld412

Put a,=wu,-+1v,. Since, by hypothesis, [an| —u, =%, we may write
|@n| =tn"+h,/2, where 0<h,<1. Hence

[t a2 14wz u+ 1+ h)/2 =]a]| + 3

v

|1+ as+as| Z 14 us+ us
= (1= ho/2 = hs/2) + | aa| +| as] > as],
|1+ au+ tuir| Z 1+ Un + thais Z %n + 7a/2 + hgs + har/2
2 | au| +| awnl, mEh A5
If then we put
gﬂ=‘1+02n+1+02n+2|_la2n+2|’ n=12234- -,

l 1+ asnp + a2n+2l
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we see that 0<g, =1, (=1, 2, 3, - - - ); and that

A2n,A2n,
(1 - gn—l)gn g ‘ i +1i ’
l (1 + agn—1 + a2n)(1 + @241 + Gzn+2) l
n=2234- -,

g2 as| /| 1+ as+ adl.

Define 1, %3, x3, + - - by the equations
— Q203
(14 a)(1 + as + ay) -
a
(4.2) 2 3 4
= O02n02n+1

- = (1-— n— n¥n
(1 + g1 + dzn)(l + A2n41 + azn+2) ( 8 l)g

(n=2,3,4, ), 50 that |x;| <|as|/|1+a| S1—(1/2]140a]) <1;
[xa] =1, (n=2,3,4, ).
Now the even part?® of (1.2) is
1 G203 @405
l+a—-—1+a+a—1+a+a—- .

On making an equivalence transformation and introducing the expres-
sions in (4.2) we find that this takes the form

(4.3) 1 {_}_ §1%1 (1 — gu)gexs }
l+aell+ 1 + 1 + ..

In case some @, vanishes, the continued fraction terminates.
Now put

81 (1 — gogexe (1 — go)gsws
1+ 1 + 1 4

so that w=1/(1-+a:) (1 +x:12). For 2 we have the inequality*

. — 1 ‘ é 1 — gl,
2—g 2—pn
and consequently
1
|——— —a| =D,
w

3 CT, p. 160.
¢ H. S. Wall, 4 class of functions bounded in the unit circle, Duke Mathematical
Journal, vol. 7 (1940), pp. 146-153, p. 148.
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where a and b are as defined in the statement of the theorem. From
this (4.1) now follows, and the theorem is proved.
Examples. If aa=2+43:/2, as=—1/2, as= —1/4 we find that

24(78 — 53i) | _ 240
8893 = 8893
If a2=1/2,a3;=1/6, a,=1/3, we find that
| w — .69375| < .00625.

In this case the first four partial quotients are the same as those in a
continued fraction for log 2=.6931 - - .,

NORTHWESTERN UNIVERSITY

SUR LE NOMBRE COMPLEXE BINAIRE
PEDRO F. CAPELLI

I. INTRODUCTION

L’objet de ce travail est de démontrer que la théorie des fonctions
polygénes! d'un variable complexe connu et celles d'un variable com-
plexe duel et hyperbolique développées par les docteurs Vignaux et
Durafiona y Vedia? sont des cas particuliers d'une méme théorie qui
en contient d’autres.

On doit l'origine de cette théorie & la suivante interprétation gé-
ométrique de la définition d'unité imaginaire ?= —1, j2=1, k2=0.

Si nous considérons le point représentatif de cette unité, nous ob-
servons que son carré représente un autre point qui géométriquement
signifie, dans le champ complexe ordinaire, une rotation de 4m/2, et,
dans le champ complexe hyperbolique, une rotation de —x/2 et dans
le duel une translation a zéro.

Il n’y a rien de plus naturel que de considérer ces questions comme
cas particuliers d'une rotation et d’une translation combinées, c’est-a-
dire que nous mettons un complexe a+ba dont 'unité imaginaire «
est telle que a?=pu-+ra, ce qui analytiquement exprime le concept
géométrique que nous venons de dire. Quand

1'Le mot polygéne était introduit par E. Kasner. Voyez son premier papier: 4 new
theory of polygenic or nonmonogenic functions, Science, vol. 66 (1927), pp. 581-582.

2 Sobre las funciones de una variable compleja hiperbilica, Contribucién al Estudio
de las Ciencias Fisicomatemdticas, vol. 1, estudio 22, 1935. J. C. Vignaux, Sobre la
teoria de fonciones poligenas de una y varias variables complejas duales, ibid., estudio 32,



