THE R_{λ} -CORRESPONDENT OF THE TANGENT TO AN ARBITRARY CURVE OF A NON-RULED SURFACE

P. O. BELL

In a recent paper¹ the author defined at a general point y of a nonruled analytic surface S the tangent line which he calls the R_{λ} -correspondent of the tangent at y to a general curve C_{λ} of S. It was proved² that (i) a curve C_{λ} is a curve of Darboux if and only if at each of its points the R_{λ} -correspondent of the tangent to C_{λ} coincides with this tangent, (ii) a curve C_{λ} is a curve of Segre if and only if at each of its points the tangent to C_{λ} and its R_{λ} -correspondent are conjugate tangents of S.

The primary purpose of this note is to present the following simple construction for the R_{λ} -correspondent: Let Λ denote a point of C_{λ} distinct from y, let U, V denote, respectively, the points of intersection of the asymptotic u- and v-curves passing through y with the asymptotic v- and u-curves passing through Λ , and let W denote the point of intersection of the tangent plane to S at y with the line joining the points U, V. If y is held fixed while Λ tends toward y along C_{λ} , the point W describes a curve C_{w} and, except when C_{λ} is a curve of Segre or is tangent at y to a curve of Segre, the limit of W is the point y. The tangent at y to C_{w} is the R_{λ} -correspondent of the tangent to C_{λ} at y.

The validity of this construction will be proved, and in addition the following theorem will be demonstrated:

A curve C_{λ} is a curve of Segre if and only if for a general point y of C_{λ} the limit of W as Λ tends to y along C_{λ} is a point W_0 distinct from y. The point W_0 is the intersection of the directrix of the first kind of Wilczynski with the tangent at y to the corresponding curve $C_{-\lambda}$ of Darboux.

Let the homogeneous projective coordinates $y^{(1)}, \dots, y^{(4)}$ of a general point y on a non-ruled analytic surface S in ordinary space be functions of asymptotic parameters u, v. The functions $y^{(i)}$ are solutions of a system of differential equations, which can be reduced by a suitable transformation to Wilczynski's canonical form

(1)
$$y_{uu} + 2by_v + fy = 0$$
, $y_{vv} + 2a'y_u + gy = 0$.

The coefficients of these equations are functions of u, v which are connected by three conditions of integrability. Moreover, the coordinates

¹ P. O. Bell, A study of curved surfaces by means of certain associated ruled surfaces. Transactions of this Society, vol. 46 (1939), pp. 389-409.

² Loc. cit., p. 393.

 $y^{(i)}$ are not solutions of any equation of the form $Ay_{uv}+By_u+Cy_v+Dy=0$ whose coefficients are functions of u, v not all zero. This statement implies that the point y_{uv} , whose coordinates are the functions $y_{uv}^{(i)}$, does not lie in the tangent plane to S at y.

An arbitrary one-parameter family F_{λ} of curves of S is defined by the curvilinear differential equation $dv - \lambda du = 0$, where λ is an arbitrary function of u, v. We denote by C_{λ} the curve of F_{λ} which passes through y. If u, v be regarded as functions of a single parameter t, as t varies, the point y, whose curvilinear coordinates are u, v, describes a curve of S. This curve will be the curve C_{λ} if the functions u = u(t), v = v(t) are selected such that for a general value of t

$$\lambda(u, v) = v'/u',$$

where accents indicate differentiation with respect to t.

The curvilinear coordinates of the point Λ are given by $u(t+\overline{\Delta t})$, $v(t+\overline{\Delta t})$. The points U and V are therefore given by $u(t+\overline{\Delta t})$, v and v, $v(t+\overline{\Delta t})$. The general homogeneous coordinates of the points U and V are consequently functions of v, and may be represented by the developments

$$U = y + y_{u}u'\overline{\Delta t} + (y_{uu}u'^{2} + y_{u}u''u')\overline{\Delta t^{2}}/2 + (y_{uuu}u'^{3} + 3u'^{2}u''y_{uu} + f_{1}y_{u})\overline{\Delta t^{3}}/6 + (y_{uuuu}u'^{4} + 6u'^{2}u''y_{uu} + f_{2}y_{uu} + f_{3}u_{u})\overline{\Delta t^{4}}/24 + \cdots, V = y + y_{v}v'\overline{\Delta t} + (y_{vv}v'^{2} + y_{v}v''v')\overline{\Delta t^{2}}/2 + (y_{vvv}v'^{3} + 3v'^{2}v''y_{vv} + g_{1}y_{v})\overline{\Delta t^{3}}/6 + (y_{vvv}v'^{4} + 6v'^{2}v''y_{vv} + g_{2}y_{vv} + g_{3}y_{v})\overline{\Delta t^{4}}/24 + \cdots$$

wherein f_i , g_i , i = 1, 2, 3, represent functions of u, v which for our purpose do not require explicit determination.

By differentiating equations (1) we find that the coefficients of y_{uv} in the expressions for y_{uuu} , y_{vvv} , y_{uuuu} , y_{vvv} are -2b, -2a', $-4b_u$, -4a', respectively. The coefficients of y_{uv} in the expressions for the homogeneous coordinates of the points U, V are, therefore,

$$-bu'^{3}\overline{\Delta t}^{3}/3 - (b_{u}u'^{4} + 3bu'^{2}u'')\overline{\Delta t}^{4}/6 + \cdots,$$

$$-a'v'^{3}\overline{\Delta t}^{3}/3 - (a_{v}'v'^{4} + 3a'v'^{2}v'')\overline{\Delta t}^{4}/6 + \cdots,$$

respectively. The point W, which is the intersection of the tangent plane to S at y with the line joining U, V has homogeneous coordinates which may be obtained by forming a linear combination of those of U and V which contains no y_{uv} term. Hence, such a combination is

$$(2a'v'^{3} + [a_{v}'v'^{4} + 3a'v'^{2}v'']\overline{\Delta t})U - (2bu'^{3} + [b_{u}u'^{4} + 3bu'^{2}u'']\overline{\Delta t})V.$$

Expanding this we obtain the expression

(5)
$$2(a'v'^{3} - bu'^{3})y + (a'_{v}v'^{4} + 3a'v'^{2}v'' - b_{u}u'^{4} - 3bu'^{2}u'')\overline{\Delta t}y + 2(a'v'^{3}u'y_{u} - bu'^{3}v'y_{v})\overline{\Delta t} + \text{terms of order } \overline{\Delta t^{2}}$$

for the homogeneous coordinates of the point W. If $a'v'^3 - bu'^3 \neq 0$, the limit of W as $\overline{\Delta t}$ tends to zero is, clearly, the point y. Moreover, the tangent to C_w at y has the direction defined by $dv/du = -bu'^2/a'v'^2$. This is the direction of the R_{λ} -correspondent of the tangent to C_{λ} at y. This completes the proof for the general case in which λ is not a direction of Segre.

The curve C_{λ} is a curve of Segre if and only if at each of its points the direction defined by $\lambda = v'/u'$ satisfies the equation $a'v'^3 - bu'^3 = 0$. In this case it is clear from (5) that the limit of W as $\overline{\Delta t}$ tends to zero is a point W_0 , distinct from y, whose homogeneous coordinates are given by

(6)
$$(3a'v'^2v'' - 3bu'^2u'' + a_vv'^4 - b_uu'^4)y + 2(a'v'^3u'y_u - bu'^3v'y_v), \quad \text{where } a'v'^3 = bu'^3.$$

If we divide this expression by $a'u'v'^3$, make use of the condition $a'v'^3 = bu'^3$, and make the following substitutions, $v'/u' = \lambda$, $-v'u''/u'^3 = \lambda_u$, $v''/u'v' = \lambda_v$, we obtain the simpler form

(7)
$$(3[\lambda_u + \lambda \lambda_v]/\lambda + a_v' \lambda/a' - b_u/b) y + 2(y_u - \lambda y_v), \quad \text{where } a'\lambda^3 = b,$$

for the coordinates of W_0 . It is, clearly, a simple matter to evaluate (7) explicitly for a direction $\lambda = \epsilon (b/a')^{1/3}$, wherein ϵ is a cube root of unity. The result is

(8)
$$2y_u - a_u' y/a' - \epsilon (b/a')^{1/3} (2y_v - b_v y/b).$$

This expression is a linear combination of the expressions $2y_u - a_u'y/a'$ and $2y_v - b_v y/b$ for the homogeneous coordinates of the points in which the directrix of the first kind intersects the asymptotic u- and v-tangents to S at y. Moreover, the ratio of the coefficient of y_v to that of y_u is the direction $-\epsilon(b/a')^{1/3}$ of Darboux which corresponds to the direction $\epsilon(b/a')^{1/3}$ of Segre. This completes the demonstration of the theorem.

University of Kansas