ON THE MAPPING OF QUADRATIC FORMS!

LLOYD L. DINES

The development of this paper was suggested by a theorem pro-
posed by Bliss, proved by Albert,2 by Reid,? and generalized by
Hestenes and McShane.* That theorem had to do with two quad-
ratic forms P(z) and Q(2) in real variables z!, 22, - - -, 2* with real
coefficients, and may be stated as follows:

If P(2) is positive at each point 27 (0) at which Q(z) =0, then there is
a real number u such that the quadratic form P(2)+uQ(2) is positive
definite.b

If one considers the set of points I in the xy-plane into which the
z-space is mapped by the transformation

(1 x=P(), y=0Q(@),

he will note that the above theorem may be interpreted as asserting
the existence of a supporting line of the map I which has contact
with M only at (x, ¥)=(0, 0). This suggests that the theorem is re-
lated to the theory of convex sets.

In the present paper it is proven (Theorem 1) that It is a convex
set. Furthermore it is proven (Theorem 2) that if P(z) and Q(z) have
no common zero except z=(0), then I is closed, and is either the
entire xy-plane or an angular sector of angle less than 7. Immediate
corollaries include not only the theorem quoted above, but also state-
ments of criteria for the existence of (1) semi-definite, and (2) definite
linear combinations AP (2) +uQ(2). The author hopes in a subsequent
paper to obtain analogous results for the general case of m quadratic
forms.

Throughout the paper it is to be understood without further state-
ment that P(z) and Q(z) are quadratic forms in 2!, 22, - - -, 2", with
real coefficients, the variables 2z being restricted to real values.

1. Convexity, and the condition for A P(z) +uQ(2) = 0. We give first
the following theorem.

1 Presented to the Society, December 31, 1940.

2 This Bulletin, vol. 44 (1938), p. 250.

3 This Bulletin, vol. 44 (1938), p. 437.

4 Transactions of this Society, vol. 47 (1940), p. 501.

§ While the present paper was in press, Professor N. H. McCoy kindly called the
author’s attention to the fact that this theorem was proven first by Paul Finsler:
Uber das Vorkommen definiter und semidefiniter Formen in Scharen quadratischer
Formen, Commentarii Mathematici Helvetici, vol. 9 (1937), pp. 188-192. Apparently
this work had been overlooked by the authors referred to above.
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THEOREM 1. Under the transformation (1), the map I of the z-space
onto the xy-plane is convex.

If 4 is a point of the map, distinct from the origin O, every point
of the ray OA belongs to the map, since P(rz)=r2P(z) and Q(rz)
=72Q(2) for every real number 7. Hence, if 4 and B are two points
collinear with O, and each belongs to MM, then all points of the line
segment AB belong to IN.

We will therefore assume that A4 (x:, ¥1) and B(xs, y2) are points
of M, not collinear with the origin, defined by

%1 = P(z1), xy = P(2),
1 2 n
yl = Q(Zl)? y2 = Q(z2)7 2 = (Ziy Ziy "ty zi)r

and attempt to show that every point on the line segment 4B be-
longs to M. Without loss of generality we will further assume that

(2)

3 Xey1 — X1y = k%2 > 0.

It will suffice to show analytically that if { is any given number
such that 0<f<1, then the equations

4) P(z) = 1+ Uz — %),  Q(z) = y1+ iy2 — y)
admit a real simultaneous solution z= (g1, 22, - - - , 2").

In (4) we make the substitution
©) z = p(21 cos 8 + 2z sin 6)

where p and 6 are real variables, and write the results in the form
© p?p(cos 6, sin 0) = x; + (%2 — 1),
p*q(cos 6, sin 6) = y1 + i(y2 — 1),
where p and ¢ are quadratic forms in cos 6, sin 0, defined by
e p(cos 6, sin §) = P(z; cos 6 + 2, sin ),
g(cos 0, sin §) = Q(z1 cos 8 + 2. sin 6).

Elimination of p? from the two equations (6) imposes upon 6 the
condition
(8) y1p(cos 0, sin §) — x1g(cos 6, sin 6) = {T'(6)
where
(9) T() = (y1 — ya)p(cos b, sin §) — (x1 — x5)g(cos 6, sin §).

The function T'(0) is a quadratic form in cos 6, sin §, which has the
positive value k% at 6 = —7/2, =0, and 6 =7/2; as can be easily veri-
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fied from (7), (2), and (9). Since it can vanish for at most two values
of § between —m/2 and /2, and must be negative between any two
such values if they exist, the function T'(8) will be positive on at least
one of the two intervals —7/2<60=<0 or 0=0=7/2. We will suppose,
for definiteness, that it is the latter, the argument being similar in the
two cases.

We define a function f(8) by the formula

y1p(cos 9, sin §) — x1g(cos 6, sin )
1) =

T(6)

which is obviously continuous on the range indicated, and which has
the further properties f(0) =0 and f(x/2)=1. Hence it takes on all
values between 0 and 1, and in particular there is a value § such that
f(8) =1. This 8 is then a solution of (8).

The compatibility condition (8) being satisfied by =48, we easily
satisfy the two equations (6) by taking p?=p2=k2?/T(#). And the re-
sulting

, 0<90<n/2,

z =% = p(z1 cos § + 2 sin §)
given by (5) provides the required solution for (4).

COROLLARY. A necessary and sufficient condition that there exist real
N\, M, such that for all real 2

AP(z) + uQ(2) 2 0

is that there exist real a, b, such that the two equations P(z) =a, Q(2) =b
are inconsistent for real z.

The condition is necessary, since in its absence the map I is the
entire xy-plane, and every line Ax +uy =0 separates the plane into a
positive half-plane and a negative half-plane, each of which contains
points determined by x =P(z), y=0Q(z).

However, if the point (¢, b) does not belong to the map, no point
on the ray from the origin to (a, b) belongs to the map. Hence the
origin is a boundary point of the convex set I, and through this
boundary point there passes a supporting line Ax +uy=0, such that
AP (2) +uQ(2) 20 for all real z.

2. Closure, and the conditions for A P(z) +uQ(z) >0. We now prove
the following theorem.

TureoreM 2. If P(z) and Q(2) have no common zero except z=/(0),
then IN s closed as well as convex, and is either the entire xy-plane or an
angular sector of angle less than .
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Since I is convex, if it is not the entire xy-plane it lies entirely in
some half-plane

(10) ax + by = 0, a® + b2 = 1.

We first show that, under the stated hypothesis, ¢ cannot contain
both rays of the boundary line ax+by=0. Suppose it did contain the
two symmetrical points 4 (b, —a), B(—b, a), and more explicitly that

P(Z1) = b» Q(Zl) = —-a, P(ZZ) = - br Q(Z2) = a.

Since either a or b is certainly different from zero, we may assume the
notation so chosen that a>0. Then Q(21) <0 and Q(z:) >0. Hence®
there are, in the hyperplane defined by 2=2u 2w, two linearly inde-
pendent points 2o =210+ 2200, 20 =214d 42200 , such that

(11) Q(z0) = Q(20) = 0.
Consider now the quadratic form
(1, v) = aP (211 + 220) + bQ(z1% + 220)

in the two real variables u, v. It is easily verified that ¢ vanishes at
(u, v)=(1, 0) and at (u, v) =(0, 1). These, together with the depend-
ent points (¢, 0) and (0, ¢), are its only possible zeros unless it vanishes
identically. It does not vanish identically, since it does not vanish at
(0, vo) Or (1¢ , v¢ ) in view of (11) and our hypothesis. Hence, by (10),
o (u, v) >0 except at (¢, 0) and (0, ¢). This is clearly impossible, and
the contradiction proves that the map It cannot contain both points
A (b, —a) and B(—b, a).

We now let X(x, y) denote any point of I, and consider the
angle AOX, where A=A4(b, —a) and O0=0(0, 0). Then cos 40X
= (bx—ay)/(x2+y?)1/2. And as the point 2 varies over the unit hyper-
sphere ||2]| =1, cos AOX is represented by the function

bP(z) — aQ(z)
[P°G) + @) 2
In view of the hypothesis, ¥(2) is continuous on this hypersphere; and
since its values are bounded below by —1 and above by +1, it at-
tains a minimum value m= —1 and a maximum value M =1. It is

impossible that m = —1 and M =1, since then the map I would con-
tain both points 4 (b, —a) and B(—b, a). Hence I consists of a closed

¥(e) = Il = 1.

6 Reference may be made to Bécher, Introduction to Higher Algebra, p. 151, Theo-
rem 2.
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sector bounded by rays 04’ and OB’ such that cos AOA’= M and
cos AOB’=m. And angle A’OB’ <angle AOB =.

CoOROLLARY 1. Necessary and sufficient conditions that there exist real
N\, W, such that for all real z5(0)

(12) AP(z) + pQ(z) > 0

are that: (1) there exist real a, b, such that the two equations P(z)=a,
Q(2) =b are inconsistent for real z; and (2) P(2) and Q(z) have no com-
mon zero except z=(0).

The necessity is obvious. The sufficiency follows from Theorem 2.
For if (A, u)##(0, 0) is a point of I on the bisector of its angular
sector, then (12) is satisfied.

CoROLLARY 2. (Bliss-Albert theorem.) If, whenever Q(z)=0 and
27#(0), P(2) >0; then there exists a real number u such that P(3)+uQ(z)
s positive definite.

The conditions of Corollary 1 are obviously satisfied with (a, )
=(—1, 0). Hence there exist \, p, satisfying (12). If Q(z) actually

vanishes for some 25£(0), N is necessarily positive and hence may be
taken equal to 1.

If, on the contrary, Q(z) is definite, then the map I is a closed sec-
tor of which only the vertex (0, 0) is on the x-axis. Hence there is a
line x+uy=0 such that x+4+uy>0 for all points of M except (0, 0).
Then P(z)+uQ(2) is positive definite.

It is perhaps worthy of note that the two conditions of Corollary 1
are completely independent. This is shown by the following four ex-
amples.

Example 1, in which both (1) and (2) are satisfied:

P(u, v) = u?, Q(n, v) = 2%
Example 2, in which (1) is satisfied but (2) is not:
P(u, v) = u?, Q(u, v) = wv.
Example 3, in which (1) is not satisfied but (2) is:
P(u, v) = u? 4+ 2u, O(u, v) = 2uv + 22
Example 4, in which neither (1) nor (2) is satisfied:
Pu, v, w, ) = u? 4+ 2uv + w2, Q(u, v, w, t) = 2uv + v + wi.
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