
ON THE MAPPING OF QUADRATIC FORMS1 

LLOYD L. DINES 

The development of this paper was suggested by a theorem pro­
posed by Bliss, proved by Albert,2 by Reid,3 and generalized by 
Hestenes and McShane.4 That theorem had to do with two quad­
ratic forms P(z) and Q(z) in real variables s1, z2, • • • , zn with real 
coefficients, and may be stated as follows: 

If P(z) is positive at each point 2^(0) at which Q(z)=0, then there is 
a real number /x such that the quadratic form P(z)+fiQ(z) is positive 
definite,5 

If one considers the set of points 9ÏÎ in the x^-plane into which the 
2-space is mapped by the transformation 

(1) x = P(z), y = C(s), 

he will note that the above theorem may be interpreted as asserting 
the existence of a supporting line of the map 99Î which has contact 
with 9JÎ only at (#, y) = (0, 0). This suggests that the theorem is re­
lated to the theory of convex sets. 

In the present paper it is proven (Theorem 1) that $R is a convex 
set. Furthermore it is proven (Theorem 2) that if P(z) and Q(z) have 
no common zero except s= (0 ) , then 9DÎ is closed, and is either the 
entire x^-plane or an angular sector of angle less than IT. Immediate 
corollaries include not only the theorem quoted above, but also state­
ments of criteria for the existence of (1) semi-definite, and (2) definite 
linear combinations \P (z) + fiQ(z). The author hopes in a subsequent 
paper to obtain analogous results for the general case of m quadratic 
forms. 

Throughout the paper it is to be understood without further state­
ment that P(z) and Q(z) are quadratic forms in z1, z2, • • • , sn ,with 
real coefficients, the variables z{ being restricted to real values. 

1. Convexity, and the condition for \P(z) +/JLQ(Z) ^ 0. We give first 
the following theorem. 

1 Presented to the Society, December 31, 1940. 
2 This Bulletin, vol. 44 (1938), p. 250. 
3 This Bulletin, vol. 44 (1938), p. 437. 
4 Transactions of this Society, vol. 47 (1940), p . 501. 
5 While the present paper was in press, Professor N. H. McCoy kindly called the 

author's attention to the fact that this theorem was proven first by Paul Finsler: 
Über das Vorkommen definiter und semidefiniter Formen in Scharen quadratischer 
Formen, Commentarii Mathematici Helvetici, vol. 9 (1937), pp. 188-192. Apparently 
this work had been overlooked by the authors referred to above. 
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THEOREM 1. Under the transformation (1), the map 93? of the z-space 
onto the xy-plane is convex. 

If A is a point of the map, distinct from the origin 0, every point 
of the ray OA belongs to the map, since P(rz)=r2P(z) and Q(rz) 
= r2Q(z) for every real number r. Hence, if A and B are two points 
collinear with 0, and each belongs to 3D?, then all points of the line 
segment AB belong to 9D?. 

We will therefore assume that A(xi, yi) and B(x2, y2) are points 
of 3D?, not collinear with the origin, defined by 

Xi = P (Z i ) , X2 = P (Z 2 ) , 
(2) 1 2 n 

y 1 = Ö(^ i ) , y2 = QO2) , Zi = 0 ; , s», • • • , s*), 

and attempt to show that every point on the line segment AB be­
longs to 3D?. Without loss of generality we will further assume that 

(3) x2yx — X\y2 = k2 > 0. 

It will suffice to show analytically that if / is any given number 
such that 0 < £ < 1 , then the equations 

(4) P{z) = X! + t(x2 - xi), Q(z) = yi + t(y2 - yi) 

admit a real simultaneous solution z = (zl, z2, • • • , zn). 
In (4) we make the substitution 

(5) z = p{z\ cos 0 + z2 sin 0) 

where p and 0 are real variables, and write the results in the form 

p2p(cos 0, sin 0) = xi + t(x2 — ^ ) , 
(6) 

p2q(cos 0, sin 0) = yx + t(y2 — yx), 

where p and g are quadratic forms in cos 0, sin 0, defined by 

^(cos 0, sin 0) = P(z\ cos 6 -\- z2 sin 0), 

<?(cos 0, sin 0) = Q(z\ cos 0 -{- z2 sin 0). 

Elimination of p2 from the two equations (6) imposes upon 0 the 
condition 

(8) 3>î (cos 0, sin 0) - %g(cos 0, sin 0) = Jr(0) 

where 

(9) T(6) = (yi — y2)^(cos 0, sin 0) — (xi — x2)q(cos 0, sin 0). 

The function T(6) is a quadratic form in cos 0, sin 0, which has the 
positive value k2 at 0 = — 7r/2, 0 = 0, and 0 = 7r/2; as can be easily veri-
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fied from (7), (2), and (9). Since it can vanish for at most two values 
of 0 between — 7r/2 and 7r/2, and must be negative between any two 
such values if they exist, the function T(6) will be positive on at least 
one of the two intervals —7r /2^ö^0 or O ^ 0 = V / 2 . We will suppose, 
for definiteness, that it is the latter, the argument being similar in the 
two cases. 

We define a function f (6) by the formula 

;yi/>(cos 0, sin 0) — #i<7(cos 0, sin 0) 
f(0) = H± ! i î*l ! \ 0 ^ ^ TT/2, 
J T(6) 

which is obviously continuous on the range indicated, and which has 
the further properties ƒ(0) = 0 and f(j/T) = 1. Hence it takes on all 
values between 0 and 1, and in particular there is a value 0 such that 
ƒ(£)=/ . This 0 is then a solution of (8). 

The compatibility condition (8) being satisfied by 0 = 0, we easily 
satisfy the two equations (6) by taking p2 = p2 = k2/T(d). And the re­
sulting 

z = z = p(z\ cos 0 + £2 sin 0) 

given by (5) provides the required solution for (4). 

COROLLARY. A necessary and sufficient condition that there exist real 
A, n, such that for all real z 

\P(z) + vQ{z) è 0 

is that there exist real a, b, such that the two equations P(z)=a, Q(z)=b 
are inconsistent f or real z. 

The condition is necessary, since in its absence the map 2JÎ is the 
entire :ry-plane, and every line \x+fiy = 0 separates the plane into a 
positive half-plane and a negative half-plane, each of which contains 
points determined by x = P(z), y = Q(z). 

However, if the point (a, b) does not belong to the map, no point 
on the ray from the origin to (a, b) belongs to the map. Hence the 
origin is a boundary point of the convex set 9ft, and through this 
boundary point there passes a supporting line X#+ju;y = 0, such that 
\P(z)+fiQ(z) ^ 0 for all real z. 

2. Closure, and the conditions for \P(z) +iiQ(z) > 0 . We now prove 
the following theorem. 

THEOREM 2. If P{z) and Q(z) have no common zero except z= (0 ) , 
then 9JÎ is closed as well as convex, and is either the entire xy-plane or an 
angular sector of angle less than T. 
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Since 9DÎ is convex, if it is not the entire x^-plane it lies entirely in 
some half-plane 

(10) ax + by ^ 0, a2 + b2 = 1. 

We first show that, under the stated hypothesis, 9K cannot contain 
both rays of the boundary line ax+by = 0. Suppose it did contain the 
two symmetrical points A(b, — a), B( — &, a), and more explicitly that 

P(*ù = b, Q(*0 = - a> P(**) = - 6i 0(22) = a. 

Since either a or b is certainly different from zero, we may assume the 
notation so chosen that a > 0 . Then Q(z{) <0 and <2(z2)>0. Hence6 

there are, in the hyperplane defined by z = Z\U-\-z<#), two linearly inde­
pendent points Zo = ZiUo+z2v0} zó =ZIUQ +Z2VÓ , such that 

(11) G(*o) = Q(*o') = 0. 

Consider now the quadratic form 

<t>(u, v) = aP(z\u + Z2V) + bQ(z\U + s2^) 

in the two real variables u, v. I t is easily verified that 0 vanishes at 
(u, Î/) = ( 1 , 0) and at (^, z>) = (0, 1). These, together with the depend­
ent points (c, 0) and (0, c), are its only possible zeros unless it vanishes 
identically. It does not vanish identically, since it does not vanish at 
(uoy Vo) or (uó, VQ ) in view of (11) and our hypothesis. Hence, by (10), 
<j>(u, v)>0 except at (c, 0) and (0, c). This is clearly impossible, and 
the contradiction proves that the map 9JÏ cannot contain both points 
A(b, —a) and B( —6, a). 

We now let X(x, y) denote any point of 3JI, and consider the 
angle AOX, where A=A(b, - a ) and 0 - 0 ( 0 , 0). Then cos A OX 
= {bx—ay)/{x2+y2)112. And as the point z varies over the unit hyper-
sphere ||s|| = 1, cos AOX is represented by the function 

Mz) = —} \\z\\ = 1. 

In view of the hypothesis, ip(z) is continuous on this hypersphere; and 
since its values are bounded below by — 1 and above by + 1 , it at­
tains a minimum value m^ — 1 and a maximum value MS 1. I t is 
impossible that m= — 1 and M= 1, since then the map 2JÏ would con­
tain both points A(b, —a) and B( — b, a). Hence 9J? consists of a closed 

6 Reference may be made to Bôcher, Introduction to Higher Algebra, p. 151, Theo­
rem 2. 
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sector bounded by rays OA1 and OB' such that cos AOA' = M and 
cos AOB' = m. And angle A'OB' <angle AOB=ir. 

COROLLARY 1. Necessary and sufficient conditions that there exist real 
X, jit, such that f or all real z 5^(0) 

(12) \P{z) + fxQ(z) > 0 

are that: (1) there exist real a, ô, such that the two equations P(;s)=a, 
Q(z)=b are inconsistent f or real z; and (2) P(z) and Q(z) have no com­
mon zero except z = (0). 

The necessity is obvious. The sufficiency follows from Theorem 2. 
For if (X, M ) ^ ( 0 , 0) is a point of 9ÏÎ on the bisector of its angular 
sector, then (12) is satisfied. 

COROLLARY 2. (Bliss-Albert theorem.) /ƒ, whenever Q(z)=0 and 
Zy* (0), P(z) > 0 ; then there exists a real number fx such that P(z) +fxQ(z) 
is positive definite. 

The conditions of Corollary 1 are obviously satisfied with (a, b) 
= (—1, 0). Hence there exist X, jut, satisfying (12). If Q(z) actually 
vanishes for some 2^ (0 ) , X is necessarily positive and hence may be 
taken equal to 1. 

If, on the contrary, Q(z) is definite, then the map 2Jt is a closed sec­
tor of which only the vertex (0, 0) is on the x-axis. Hence there is a 
line x+fxy = 0 such that x+ixy>0 for all points of WI except (0, 0). 
Then P{z)JrixQ{z) is positive definite. 

I t is perhaps worthy of note that the two conditions of Corollary 1 
are completely independent. This is shown by the following four ex­
amples. 

Example 1, in which both (1) and (2) are satisfied: 

P(u, v) = u2, Q(u, v) = v2. 

Example 2, in which (1) is satisfied but (2) is not: 

P(u> v) = u2, Q(u, v) = uv. 

Example 3, in which (1) is not satisfied but (2) is: 

P(uy v) = u2 + 2uv, Q(u, v) = 2uv + v2. 

Example 4, in which neither (1) nor (2) is satisfied: 

P(Uy v, w, t) = u2 + 2uv + w2, Q(u, v, w, t) s 2uv + v2 + wt. 

CARNEGIE INSTITUTE OF TECHNOLOGY 


