
ON A PROPERTY OF k CONSECUTIVE INTEGERS1 

ALFRED BRAUER 

S. S. Pillai2 has just proved the following theorem: In every set of 
less than 17 consecutive integers there exists at least one integer which 
is relatively prime to all the others ; there are sequences of k integers 
for k = 17, 18, • • • , 430, however, which have not this property. Pillai 
conjectures that the same is valid for every k ^ 17. I shall prove that 
this conjecture is true. 

The method of the proof is similar to the method I applied in a 
joint paper with H. Zeitz3 in proving that the following conjecture 
is wrong for every prime p ^ 43. 

Denote by pn the nth prime. Then there exist at most 2^n_i—1 con
secutive integers such that each of these integers is at least divisible by 
one of the primes pi, p2, • • • , pn-

This conjecture was used by Legendre for his proof of the theorem 
of the primes in arithmetical progressions. First I prove the following. 

LEMMA. Let ir(x) be the number of primes p^x. Then we have 

[ \ogx~] 

b 2 _ | + 2 

for every x^75. 

PROOF. If we put, as usual, 

â(x) = £ log p, 
p£x 

then we have 

TT(2X) - TT(X) = Z 1 ^ E (log P/Iog 2x) 
. . x<p^2x x<p£2x 

= \ ]C l°g P \ /log 2% = (#(2x) - #0)} /log 2%. 
\x<p^2x J 

1 Presented to the Society, September 12, 1940. 
2 S. S. Pillai, On m consecutive integers, Proceedings of the Indian Academy of Sci

ences, section A, vol. 11 (1940), pp. 6-12. 
3 A. Brauer und H. Zeitz, Über eine zahlentheoretische Behauptung von Legendre, 

Sitzungsberichte der Berliner mathematischen Gesellschaft, vol. 29 (1930), pp. 116-
125. Cf. A. Brauer, Question concerning the maximum term in the diatomic series— 
proposed by A . A . Bennett, American Mathematical Monthly, vol. 40 (1933), pp. 409-
410. 
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It is known that4 

â(2x) - û(x) ^ û(2x - 2) - â(x) > .7x- 3 Ax1*2 

- 4.5 log2 x - 24 log x - 32. 

Hence, by (1), (2), and (3), it is sufficient to prove that 

.7x~3.4x 1 / 2~4.51og 2x-241ogx~32>(21og^/log2 + 2)(logx+log2), 

/(x) = .7^-3.4^ 1 / 2 - log 2x(4.5 + 2 / l o g 2 ) - 2 8 1 o g x - 3 2 - 2 1 o g 2 > 0 . 

It is easy to see that f(x)>0 holds for # = 1024, since log 1024 < 7 . 
Moreover we have 

9 + 4/log 2 28 
f(x) = .7 - 1.7a;-1/2 log x > 0 for x ^ 1024. 

X X 

Hence f(x) is increasing for x = 1024 and the lemma is proved for 
#^1024. 

For 75 ^x< 1024 the lemma can be proved directly. For instance, 
it follows for 5 9 1 = * < 1 0 2 4 and for 3 5 5 = # < 5 9 1 by the fact that 
there are 22 primes between 1024 and 1182 and 20 primes between 
591 and 710. In the same way we get the lemma for 2 3 1 ^ # < 3 5 5 , 
1 5 9 g # < 2 3 1 , and so on. 

THEOREM. For every k = 17 there exists a sequence of k consecutive in
tegers such that none of these k integers is relatively prime to the product 
of the others. 

PROOF. In view of the paper of Pillai, it is sufficient to prove the 
theorem for & = 300. We put 

- [ T > (4) m = — è 75. 

Let pu p2, - - - , pr be the primes in the closed interval {1 • • • m} and 
pr+h pr+2, - - - , p8 the primes in the closed interval {m + 1 • • • 2m}. 
If we consider k consecutive integers, then each of the primes 

(5) pi, p2, ' ' • , pr, pr+U pr+2, ' ' ' , ps 

divides at least two of the k integers, since each of these primes is 
less than 2m, hence by (4) less than k/2. Therefore each of these k 
integers which is divisible by at least one of the primes (5) is not rela
tively prime to all the k — 1 other integers. Hence it is sufficient to 

4 See, for example, E. Landau, Handbuch der Lehre von der Verteilung der Primzah-
len, vol. 1, 1909, p. 91. 
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prove that there exist sequences of k integers such that for £^300 
each of these integers is divisible by at least one of the primes (5). 

We consider the simultaneous congruences 

(6) x = 1 (mod 2), x = 0 (mod p2pz • • • pr). 

Let x be a solution of (6). Then the integers 

(7) x—2tn, x—lrn+l, • • • , x—2, x, x+2, • • • , x+2tn—2, x+2m 

form a sequence of 2 m + 1 odd integers of the form 

(8) x ± 2JU, /* = 0, 1, • • • , w. 

If jit is divisible by the odd prime pVl we have pv^pr, since ju^ra be
cause of (8). Hence we obtain from (6) that 

(9) x ± 2fx = 0 (mod pv). 

I t follows from (9) that all those integers of (7) which have not the 
form x±2T with r ^ l are divisible by at least one of the primes 
P*> Pz, ' ' ' , Pr-

If we put 

flog m~\ 

(io) bi]+i-'-
then the integers of the form x±2T with r ^ l in the set (7) are the 
integers 
(11) x ± 2, x ± 22, • • • , x ± 2K 

By (4), it follows from the lemma and from (10) that the number of 
primes in the closed interval {m + 1 • • • 2m} is 

[log ml 
—— +2 = 
log 2 J 

2L 
log: 

On the other hand the primes in this interval were pr+i, pr+î, • • • , p^ 
hence 

(12) s-ri:2t, pr+2t ^ p.. 

Beside the congruences (6) we now subject x to the following 2/ con
gruences 

x + 2 ' = 0 (mod pr+r), 
(13) r = 1, 2, • • • , t. 

x — 2T = 0 (mod pr+t+r), 

These congruences always have solutions. For every solution x all the 
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numbers (7) are divisible by at least one of the primes (5), since each 
of the integers (11) is divisible by at least one of the primes 
pr+u pr+2, - - - , p8 because of (13) and (12). 

Hence each of the 4 m + 3 consecutive integers 

(14) x—2m— 1, x—lrn, x—2m+l, • • • , x—1, x, x+lt • • • , x+2m+l 

is divisible by at least one of the primes (5), since 

x — 2m — 1 = x — 2w + 1 = • • • = = # - — l s = # + l 

s . . . = a + 2m + 1 = 0 (mod 2). 

Because of (4) we have 

k ^ 4m + 3. 

Therefore we can take k consecutive integers from (14). None of these 
k integers is relatively prime to the product of the k — 1 others. 

INSTITUTE FOR ADVANCED STUDY 


