MEASURABILITY AND MODULARITY IN THE
THEORY OF LATTICES!

M. F. SMILEY

In a previous note? a notion of measurability (with respect to a
function u) of elements of an arbitrary lattice was introduced. Our
purpose there was to study closure properties of the subset of measur-
able elements. To do this it was convenient to assume that the lattice
was modular. Results of V. Glivenko,? and of L. R. Wilcox and the
author®indicate that the idea of measurability and that of modularity
are intimately related. The purpose of this note is to exhibit a further
relationship which does not depend on metric properties of the func-
tion u.

In a lattice L we call the ordered pair (a, b) of elements of L modu-
lar and write (a, b) M in case (a1+a)b=a:+ab for every a1 =b. This
relation has been studied by L. R. Wilcox.? If u(a) is a real valued
function defined on L we say that an element ¢ &L is u-measurable in
case

w(e) + u(d) = u(c + b) + u(cd)

for every b& L. The symbol L(u) will denote the totality of elements
of L which are p-measurable. We call u proper in case ¢ <b with
u(a) =u(d) implies a =b.

Before we discuss the general case, let us consider a lattice Lo of
finite dimension (that is, satisfying both chain conditions) in which
every principal chain joining two elements a¢, b& L, has the same
length n(a, b). Examples of such lattices are well known.® Let 0 de-

1 Presented to the Society, February 24, 1940.

2 A note on measure functions in a lattice, this Bulletin, vol. 46 (1940), pp. 239-241.
This concept specializes to that of permutability with all subgroups (that is, the
guasi-normality of O. Ore, Structures and group theory I, Duke Mathematical Journal,
vol. 3 (1937), p. 162) if we set u(s) =log o(s) in the lattice of subgroups of a finite
group, and to that of measurability in the sense of Carathéodory with respect to an
outer measure function,

38 Contributions & I'étude des systémes de choses normées, American Journal of Mathe-
matics, vol. 59 (1937), pp. 933-934.

4 Metric lattices, Annals of Mathematics, (2), vol. 40 (1939), p. 313.

8 Modularity in the theory of lattices, Annals of Mathematics, (2), vol. 40 (1939),
p. 491 fi.

¢ The “exchange” lattices discussed by Saunders Mac Lane (4 lattice formulation
for transcendence degrees and p-bases, Duke Mathematical Journl, vol. 4 (1938), pp.
455-468) as well as the “semi-modular” lattices of finite dimension of Wilcox (op.
cit., pp. 502-505) have these properties. We make no use, however, of the metric
properties of these systems.
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note the least element of L, and define uo(a) =n(0, a). We note that y,
is proper. These considerations lead to the following theorem.

THEOREM 1. If cEL, then ci&Lo(uo) for every ci=c if and only if
a =cimplies that (b, a) M for every b & Ly and furthermore that x=ax-+b
for every x &L for which b<x=<a-b.

Proor. To show the sufficiency of the condition consider elements
b, ciE L for which ¢; = c¢. It is easily seen that ¢; & Lo(u) provided that
n(c1b, ¢1) =n(b, ci+b). We shall prove in fact that ¢/cib=2c,+b/b.
As usual, for x&ci/cid, that is, cib=x1=c), define f(x:)=x+4b.
Clearly f(x1) Eci+b/b. Also f(ci/cib) =c1+b/b; for if b=<x=c1+0b, by
hypothesis f(cix) =x. Suppose f(x1)=f(xs), that is, x1+b=ux-+0.
Clearly (x14b)c;= (x2+b)ci. By hypothesis (b, ¢1) M, and it follows
that x14bcy = x2+bcy, x1=%2. Thus f(x1) establishes a one-to-one cor-
respondence between c¢;/cib and c¢;+b6/b. This correspondence pre-
serves the ordering relation and hence ¢i/c6=2¢;4+b/b. The proof of
the sufficiency of the condition is complete. The proof of the necessity
is included in the proof of the following theorem.

THEOREM 2. Suppose that u(a) is a proper real valued function de-
fined on a lattice L. Consider an element cEL. If ¢c;&L(u) for every
a=c, then (b, a) M for every a<c and every bEL, and furthermore
x=ax+0b for every x EL such that b=x=a-+b.

Proor. Consider elements ¢, b& L with a <c¢. To show that (b, a) M,
it suffices, since u is proper, to prove that
#((a1 + b)a) = u(ar + abd)
for every a1 <a. By hypothesis a1, a €L(u) and consequently
#((a1 + b)a) = p(ar + ) + p(a) — u(a + b)
= (a1 + b) + u(ad) — w(d)
= p(ar) + p(b) — u(a:d) + u(ad) — u(d)
= p(a1) + u(ab) — u(aid) = p(ar + ab).

Thus we have (b, a) M. Now consider an element x &L for which
b=x=a-b. Clearly ax <a =<c and hence a, ax&EL(u). It follows that

u(ax + b) = p(ax) + w(b) — p(ab)
= u(x) + w(a) — pla + ) + u(d) — w(abd)
= w(x) + u(a) + u(d) — u(a + b) — w(ad)
= u().
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Since p is proper we have x=ax-+b and this completes the proof.

COROLLARY. If pEL is a point, then p&L(u) implies that b+p is
prime over b for every bEL such that bp=0.

Proor. Consider a point pEL(u) and an element b&EL for which
bp=0. We always have (b, p) M and thus the first part of our conclu-
sion is vacuous.” The second part yields x =5+ px for every x &L for
which b Sx Zb+p. Since px=0 or px=p, it follows immediately that
b-+p is prime over b.

ReMARK. Consider the example of a lattice of six elements 0, p, g, b,
¢, 1, with p <c, ¢<b, 0 the least element, and 1 the greatest element.
Our corollary yields the fact that no proper real valued function u can
be defined over this lattice for which p or g is u-measurable.
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7 L. R. Wilcox, op. cit., p. 491.



