
A NOTE ON THE LIMIT OF ORBITS1 

G. E. SCHWEIGERT 

Theorem A, stated below, is established in a recent paper2 by D. W. 
Hall and the author. Various factors favoring a change in the point 
of view have enabled the writer to see a simpler proposition which 
contains Theorem A as a corollary. The purpose of this note is to 
prove this newer theorem and to point to its implications in the 
particular case shown by the example at the end. 

A single valued continuous transformation T(M) = M of a compact 
metric space onto itself is said to be pointwise periodic provided that 
for each point x in M there exists a positive integer n such that 
Tn(x) =x. Such a transformation must be one-to-one, hence a homeo-
morphism. The least positive integer n such that Tn(x)=x is said 
to be the period of a point x in M and is denoted by p(T, x). By the 
orbit of a point under T, or more briefly by a point-orbit, we shall 
mean the finite set consisting of a point x of M and all the images 
T(x), T2(x)^TT(x), and so on, under T. Similarly if X is a compo­
nent of an invariant set L, that is, a set L for which T(L) =L, then the 
finite sum of disjoint components X + T(X) + T2(X)+ • • • +Tk(X) 
is said to be the component-orbit of X relative to L under T. This ex-
tention of the notion of a point-orbit3 is possible since the property of 
being a component (maximal connected set) in L is invariant under 
T. In all that follows the brief term component-orbit will be used 
instead of the original precise form in which an invariant set is chosen 
first. Furthermore if G is such a component-orbit sets X or K men­
tioned in close proximity to G may be understood without confusion 
to be components such as X in the definition above. In other words 
it is best to think of each G as a function of X or K as if it were 
written G(X) or G(K), so that these sets may be used freely without 
accounting for their presence each time. The lower case letters such 
as x and p will denote points, and point-orbits will bear a subscript, 
for example, Gx. 

These two types of orbit are obviously related in such a fashion 
that : (a) The number of components in a n orbit G equals at most 

1 Presented in part to the Society, April 15, 1939. 
2 Properties of invariant sets under pointwise periodic homeomorphisms, Duke 

Mathematical Journal, vol. 4 (1938), pp. 719-724. 
3 See L. Whyburn, Rotation groups about a set of fixed points, Fundamenta Mathe-

maticae, vol. 28 (1937), p. 124. This is perhaps the first and certainly a most consistent 
and fruitful use of this extended notion. 
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the minimum value of p(T, x) for # £ X ; (b) If G has k components 
Tl(X) and if Gx is a point-orbit associated with x^X, then the num­
ber of points in Gx- T\X) is the same for all values of i in the range 
0 to k — 1. Furthermore the set GX-T%X) is a point-orbit under Tk 

for each fixed i. It is to be understood that T°(X) = X as in case for 
i = 0 above. 

THEOREM A. If M is a compact metric space, T(M) = M a point-
wise periodic transformation, {GXk} a convergent sequence of point-
orbits under T with limit set L, and if there is in L a connected set B 
such that T{B) = B, then L is connected. 

The following lemma is stated without proof since it is practically 
the same as Theorem A and follows from the exact argument used in 
the proof as published. 

LEMMA 1. If M is a compact metric space, T(M) = M a pointwise 
periodic transformation, {GXk} a convergent sequence of point-orbits 
under T with limit set L, and if Gx denotes any point-orbit in L, then L 
has the property that for every separation* L — Ll+L2 the sets GxL

l and 
GXL2 are non-vacuous. 

We are now in a position to prove an extended form of this result. 

LEMMA 2. If M is a compact metric space, T(M) = M a pointwise 
periodic transformation, {GXjc} a convergent sequence of point-orbits 
under T with limit set L, and if X is a component of L, then L = G where 
G is the component-orbit of X under T. 

PROOF. Case (i) : There exists an isolated component K in L, that is, 
K is a component which is both open and closed in L. 

Let G denote the component-orbit of K and consider the equations 

L=G+ (L-G), G = K+ T(K) + • • • + T™(K), 

m a positive integer. 

Now T is a homeomorphism on L, and K being isolated in L implies 
that T(K) and T2(K), and so on, are also isolated in L so that G is 
both open and closed in L. This shows that the set L — G must be 
vacuous, for otherwise L = G + (L — G) is a separation of L contrary 
to Lemma 1. If L — G is vacuous then L = G and Lemma 2 is true. 

Case (ii) : L contains no isolated components. 
We will show that this case is impossible in view of Lemma 1. Let 

4 We say that M=R+S is a separation of M provided neither R nor S is vacuous 
and R§ — 0 = RS, where N is the closure of a set N. 
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X be any component of L and let m be a positive integer chosen so 
that X, T(X), • • • , Tm(X) represent the (ra + 1) distinct components 
of the component-orbit G. Now L is not connected, for otherwise L 
is itself an isolated component in L, and we may therefore choose a 
separation of L; say L = L(1)+L(2). Neither L( l ) nor 1,(2) is an 
isolated component in L and hence we may choose separations 
L ( l ) = L ( l , l ) + L ( l , 2 ) a n d L ( 2 ) = L ( 2 , l ) + L ( 2 , 2 ) s o t h a t L = L ( l , l ) 
+ L ( 1 , 2 )+L(2 , 1 )+L(2 , 2). Each of the summands L(ii, i2) when 
ii = l, 2 and 2̂ = 1, 2 is an isolated set in L, hence fails to be con­
nected, and the process continues. In general 

L = ] j j L(ii, i2, • • • , f,-), where 4 = 1, 2, 

while & has the range 1, 2, • • • ,7 ; thus L is expressed as the sum of 
2]' disjoint sets each isolated in L. Let a fixed value of j—j* be 
chosen so that 2?* is greater than m + 1. Obviously each component 
of G must intersect some set L(ii, i2, • • • , i,-) and must be contained 
in that set. Since there are more sets in L than there are components 
in G there exists a set L * = L ( / i , 72, • • -, I3) such that L*G = 0. How­
ever L = L* + (L — L*) is a separation of L and no point-orbit in G 
intersects L*. This is impossible because of Lemma 1. Thus Case (ii) 
never holds and Lemma 2 is true. 

The next and final lemma will be recognized as one having the same 
conclusion as Lemma 1 established however from fewer assumptions. 

LEMMA 1*. If M is a compact metric space, T(M) = M a pointwise 
periodic transformation, {G{} a convergent sequence of closed compo­
nent-orbits under T with limit set L, and if Gx denotes any point-orbit 
in L, then L has the property that for every separation 

L = U + L2 

the sets GxL
l and GXL2 are non-vacuous. 

PROOF. Assume contrary to the lemma that L = L1+L2 is a separa­
tion of L and there exists a point x in L such that the point-orbit Gx 

is contained in one side, say L1, of the separation. In these circum­
stances it is possible to choose a subsequence {Gik} (of the given 
sequence of component-orbits) which in turn allows us to choose 
points XkCzGik such that the point-orbits {Gxk} converge to a limit set, 
say L*, and the points {xk} converge to the point x, which defines Gx. 
Since the point-orbits converge, we may use Lemma 2 which informs 
us that the limit set L* is a component-orbit. Moreover each of the 
Unite number of components of L* may be taken as one side of a 
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separation of L* and this means, in view of Lemma 1 (or Lemma 2) 
and the fact that x is in L*, that each component Y of L* is inter­
sected by Gx. Now Gx is contained in L1 hence F is contained in Ll and 
in turn L* is contained in Z,1. 

On the other hand, using the fact that we have a separation of L 
and L is closed there exists a neighborhood V containing L2 having 
the properties that the boundary F( V) is disjoint with L and V is 
disjoint with L1. 

From this it follows that : (a) the neighborhood V has at most a 
finite number of points in common with the compact closed set^Gxk+L*. 
To show this, consider any infinite set in the product. This set deter­
mines a limit point z which belongs to L* and hence to Ll. Such a 
point z is in V= V+F(V) and not in F(V) (since z is in L), hence z 
is in V. This means z is in V and L1 both which is impossible. 

Let p be any point of L2 and consider F as a neighborhood of p. 
I t follows that there exists an integer K\ such that k>Ki implies 
Gik- V non-vacuous since {Gik} converges to L. Hence there exists 
a component Yk of Gik having the property that Yk • F is non-vacuous 
for each k>K\. 

If we recall the introductory remarks concerning the relation be­
tween component-orbits and the point-orbits which they contain we 
see that the inequality GXJc • Tk T^ 0 holds for every component Yk in 
the orbit dk since XkÇzGik. Hence we have G^Yk^O for the particular 
(when k is fixed) component selected in the paragraph above. This 
latter statement concerning Yk together with the fact (statement (a) 
in italics above) that V- (%2Gxk+L*) is at most finite tell us there 
exists an integer K% such that for k>Ki the component Yk intersects 
the complement of V. 

Combining the two properties associated with K\ and K% it is clear 
that for &>rnax (Ki, K2) each Yk intersects V and the complement 
of V. Hence for each k there exists a point ;y&£ F/c such that yk&F( V). 
This leads immediately to the conclusion that there exists a point y 
common to L and F( V). By the choice of V this cannot be true and 
the proof is complete. With the aid of Lemma 1* we now prove the 
new theorem which yields the same conclusion as Lemma 2. 

THEOREM. If M is a compact metric space, T(M) = M a pointwise 
periodic transformation and {Gi} a convergent sequence of closed com­
ponent-orbits under T with limit set L, then L is likewise a closed compo­
nent-orbit. 

PROOF. Case (i) : There exists a component X of L such that X is iso­
lated in L. 
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In this case L = G + (L — G), where G is the component orbit of X 
under Ty is either a separation of L or the left member is empty. This 
is true because G is both open and closed in L. In view of Lemma 1* 
the left side is empty; hence L = G as stated by the theorem. 

Case (ii) : No component of L is isolated in L. 
Since L is not connected let L = L(l) +L(2) be some separation of L. 

By the reasoning applied in Case (i) there exists no isolated com­
ponent in either L( l ) or L(2). Now let L ( 1 ) = L ( 1 , 1 )+L(1 , 2) and 
L(2)=Z,(2, 1 )+L(2 , 2) be separations of these sets and express L as 
the sum of the four sets with double indices. Proceeding this way the 
proof is the same as that in Case (ii) of Lemma 2. 

REMARKS. Let {GXk} be a sequence of point-orbits such that the 
number of points in GXk is bounded independent of k. It is a well 
known fact that if {G*k} converges to a limit set L then L is also a 
point-orbit having the same bound. The theorem of this note and the 
simple result just mentioned are obviously of the same type in that 
each characterizes the limit set by the exact property it assumes for 
each element of a given sequence. This analogy is supported by the 
fact that if there is a common bound for the number of components 
in the orbits of the sequence the conclusion of the theorem can be 
augmented to include this bound for the component number of the 
limit set. On the other hand any improvement in the conclusion of 
Lemma 2 which might be suggested by this esthetic point of view 
(because the elements of the sequence have a minimal character) 
seems doomed to failure. These four possibilities form a complete set 
of the bounded, non-bounded, minimal and non-minimal types of se­
quence. 

These remarks suggest that we examine certain theorems looking 
toward a possible analogy with periodic homeomorphisms—that is, 
the type of homeomorphism for which there exists a positive integer N 
such that every point-orbit contains at most N points. In this con­
nection let us suppose that M is a compact metric space and K is any 
subset of M such that ~K = M. If T(K)=K is periodic on K and 
S(M) = M is any homeomorphic extension of T, then S is periodic on 
M. This conclusion follows by an elementary demonstration. Homeo­
morphic extension is used here as meaning S(M) = M is a homeo­
morphism such that S(x) = T(x) for x 6 Z . The author feels that it 
is not only natural to ask about such extensions for the pointwise 
periodic type of homeomorphism, but feels called upon to apologize 
for the relatively minor position the question must occupy in a note 
such as this. The example given below showing that the most obvious 
analogue of the extension theorem above does not hold came up in a 
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discussion group and it was decided on an intuitive basis that the 
extension would be pointwise periodic. Thus one may see in this ex­
ample something of the inspiration for the theory of this note, a con­
crete expression of that theory, and at the same time a refutation of 
the intuitive decision. 

EXAMPLE. Let a\b\ denote an arc with end points a\ and 61. Similarly 
let anbii and #i2&i2 be arcs with end points an, &n and ai2, &12 respec­
tively. If we identify the 3 points &i = an = ai2 and identify no other 
points, we obtain a triod; that is, a Y shaped figure in which three 
otherwise distinct arcs have a common end point. The end points of 
this triod are au bn and 612. Choose four more arcs calling them ambiu 
and auibm where i = l , 2. Identify the end points &n = am = am and 
also the end points bu = am = #122 making however no other identifica­
tion. This process can be continued indefinitely, the general rule being 
to identify the a-end points of exactly two new arcs with a particular 
6-end point of the dendrite obtained in the previous stage. (Note that 
a\ remains as an end point at all times.) The completed figure is to 
be a dendrite such that all end points other than a\ lie on the Cantor 
discontinuum (middle third set) of some linear interval. The discon-
tinuum is chosen in advance, the arcs added at each stage all have the 
same diameter, say ôn, where hn approaches zero as n increases, and 
the arcs as added "reach" toward, but never intersect the discon­
tinuum. This is a well known construction usually used to illustrate a 
dendrite with uncountably many end points. 

We now denote the complete dendrite by D, the Cantor set of end 
points by C, and let K = D — C. A homeomorphism T(K)=K is de­
fined as follows: T leaves each point of the arc a\b\ fixed. The arc 
anon is sent into the arc ai2&i2 so that T(bn) = &12 and T(bn) — 611 and 
in general p(T, x) = 2 for #£an&n — an. Note that an = ai2 = &i is fixed. 
We will call this the second stage. The four arcs a\jkb\jk for j = 1, 2 and 
fe = l , 2 are permuted by T so that p.(T, x ) = 4 for x^aukbijk — aijk 
while T(bn) = bn = T(am) = am = am has period 2 as was defined pre­
viously. This is the third stage. In general the arcs added at the nth. 
stage suffer a permutation among themselves of the period 2 n _ 1 and 
the transformation agrees with the part described for the (w —l)th 
stage in the natural way indicated by the common points. 

It is clearly true that T(K)=K so defined and the associated in­
verse T~1(K)=K homeomorphism are each uniformly continuous on 
K. If necessary D can be constructed in the unit square using straight 
line segments. The high degree of symmetry allows T to act as a 
"rigid motion" from which the uniform continuity is apparent. It fol­
lows that T(K)=K may be extended to a homeomorphism S(D) =D 
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defined over all of D. However 5 is not pointwise periodic for 

Gbt = 61, Gbn = o n + &12, 

and so on, is a sequence of point-orbits which may be considered as 
component-orbits relative to themselves. This sequence converges to 
C and C is not the orbit of one of its components ; that is, not the orbit 
of one of its points since it contains uncountably many points. The 
local connectivity, symmetry, and so on, of this example indicate that 
any conditions on K== M=D that are sufficient to make 5 inherit the 
pointwise periodic property must be highly restrictive. 
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