
A PROPERTY OF A SIMPLY ORDERED SET1 

K. W. FOLLEY 

Sierpinski2 has shown that the set of real numbers of the interval 
(0, 1) may be decomposed into c disjoint subsets, each of power less 
than c, and such that the sum of every c of these subsets has at least 
one point in common with every perfect subset of the interval. 

The object of the present paper is to show that the same method 
of proof may be used to prove an analogous theorem concerning a 
more general type of set. 

DEFINITIONS. A simply ordered set M is a set such that if any two of 
its elements are given it is known which one precedes. 

A subset of M is said to be cofinal (coinitial) with M if no element of 
M follows (precedes) all the elements of the subset. 

An 7)a subset of M is one which is neither cofinal nor coinitial with 
any subset of M of power less than N a and which contains no pair of 
neighboring subsets both of which have power less than \&a. 

Various properties of simply ordered sets M containing everywhere 
dense t]a subsets, including a discussion of the perfect subsets of M, 
were discussed by the writer in a previous paper.3 

THEOREM 1. Let M be a simply ordered set containing an everywhere 
dense r]a subset N. There exists a decomposition of M into 2^« disjoint 
subsets y each of power less than 2^«, and such that the sum of every 2^« 
of these subsets has at least one point in common with every perfect sub­
set of M. 

PROOF. Let <f> be the smallest ordinal number of power 2^«. A trans-
finite sequence of type <j> formed of all the points of M exists, namely, 

(1) mi, mi9 mZy • • • , m$, • • • , £ < <j>. 

The perfect subsets of M having power 2^« may be arranged in the 
form of a transfinite sequence of type </> as follows : 

(2) Mh M2, MSl • • • , Mb • • • , { < 0. 

Let us now define a transfinite sequence {#$}$<* of subsets of M: 
H\ is formed of the single element mi. 

1 Presented to the Society, November 22, 1940. 
2 Fundamenta Mathematicae, vol. 24 (1935), pp. 8-11. 
3 Proceedings of the Royal Society of Canada, Section III, vol. 22 (1928), pp. 

225-239. 
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Now, let ]8 be any ordinal number between 1 and 4>. Suppose we 
have defined all sets H^ where £<j8, and suppose further that the 
power of Hz is not greater than | . Let Sp =^2^<pHt. Then Sp is evidently 
of power not greater than fi2 < 2^«. 

We shall define a transfinite sequence {p%} as follows. Mi being of 
power 2^«, and Sp being of power less than 2**«, Mi — Sp contains 
points. Let p\ be the first element of (1) which belongs to Mi — Sp. 
Now let rj be any ordinal number between 1 and /3, and let us suppose 
we have already defined the points p\, where £ <r). Let all these points 
form the set T^ of power not greater than ^^/3<2^«. The set 
Mn — iSp+Tr,) contains points. Let p? be the first point of (1) which 
belongs to the set En — (Sp+Tv). 

Define Hp as the set of all points p\, where £ </3; it is a set of power 
not greater than 0<2^«. 

The sets H$, with £<</>, are thus defined by transfinite induction. 
They are evidently disjoint subsets of M, each of power less than 2^«. 
The set R = M — ̂ 2^<<f>H^ is of power not greater than 2^«. Hence the 
elements of R may be arranged in the form of a transfinite sequence 
of type yp ^<f> as follows : 

qu 02, tfs, • • • , ft, • • • i £ < f. 

Let Nt = Ht+qt for £ < ^ , and if ^<</>, M^Hk for ^g£<</>. 
The sets N$ are disjoint subsets of M, each of power less than 2^«. 

Moreover M =X)e<*^-
Now, let F be the sum of any 2^« of the sets N^ £<</>. If M is any 

ordinal number less than <£, there is an ordinal number /3 such that 
jLt<j8<0, and such that Np belongs to F. Since /3>ju we have p% be­
longing to H» and therefore to iVM. Besides p% belongs to M^ Hence p% 
is a point of M^-Hp and so of F- Mp. 

It follows that F has at least one point in common with every sub­
set Mi of (2), which was to be proved. 

THEOREM 2. The generalized hypothesis of the continuum (2**« = fc^«+i) 
is equivalent to the following statement : 

The set M may be decomposed into disjoint subsets, each of power not 
greater than\Aa, such that the sum of any class of more than b$a of them 
has at least one point in common with every perfect subset of M. 

PROOF, (a) If the generalized hypothesis of the continuum is as­
sumed, Theorem 1 becomes the second part of Theorem 2. 

(b) Suppose that the second part of Theorem 2 is true. There are 
2^« perfect subsets of4 M. Each disjoint subset of M having a power 

4 See K. W. Folley, loc. cit., p. 232. 
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not greater than fc$a, it follows that a class of ^«+i of them has power 
N«+i. Such a class has at least one point in common with every perfect 
subset of M. Thus, there results the inequality 

The inequality in the opposite sense being well known, the general­
ized hypothesis of the continuum follows. 

W A Y N E UNIVERSITY 

UNIQUENESS THEOREMS FOR RATIONAL FUNCTIONS1 

FRITZ HERZOG 

In his book on the theory of meromorphic functions,2 R. Nevan-
linna proved a number of "uniqueness theorems." The most impor­
tant of them3 states that if two functions w=f(x) and w = g(x), 
meromorphic in the whole x-plane, assume five values of w (finite 
or infinite) at the same points x they must be identical. If we under­
stand by the distribution of a function w = <j>(x) with respect to a given 
value of w simply the set of all points x where <j>(x) assumes that value 
wy regardless of multiplicity, we may state the above theorem in the 
following way: Two meromorphic functions which have identical 
distributions with respect to five values of the dependent variable 
must be identical. In proving this theorem, Nevanlinna explicitly 
assumes the functions to be transcendental (i.e., not rational).3 I t 
is trivial, however, that the theorem would apply to two rational 
functions w=f(x) and w = g(x) as well, which can be easily seen by 
considering the transcendental functions w=f(ex) and w — g(ex). 

The example of the functions w = ex and w = e~x
t which have identi­

cal distributions with respect to the four values w = l, — 1, 0, <*>, 
shows that five is the smallest number for which the above-men­
tioned uniqueness theorem holds true. I t will be shown in this paper 
that such is not the case for rational functions for which five may, 
indeed, be replaced by four. (See Theorem I.) 

The question arises as to what can be said about two rational 
functions that have identical distributions with respect to only three 

1 Presented to the Society, February 24, 1940. 
2 Rolf Nevanlinna, Le Théorème de Picard-Borel et la Théorie des Fonctions 

Mérornorphes, Paris, 1929. 
3 See loc. cit., p . 109. 


