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For the case of a metric space Grossla established the equivalence 
of the following to each other and to other properties: (1) each point 
set is separable; (2) each uncountable point set contains a condensa­
tion point of itself.2 Sierpinski has shown that for a space S Fréchet 
these two properties are not equivalent; also, he gives properties 
which are equivalent to (1) or to (2).3 These properties involve count­
able collections, and, thus, are concerned with the smallest transfinite 
cardinal. Appert4 generalizes by considering extensions to greater car­
dinals. He shows that certain of these properties imply others, but 
gives examples to show that they are not equivalent.5 In a recent 
paper the author showed the equivalence of the following properties 
for the case of a space H Fréchet: (3) each uncountable point set con­
tains a limit point of itself; (4) each uncountable point set either 
contains a condensation point of itself or is separable.6 This result 
supplements Sierpinski's work by showing that property (3), which 
for the case of metric spaces is equivalent to (1) and (2), is a common 
basis for them in that it necessarily involves elements of either the 
one or of the other. In Theorem 2 property (3) is shown to be a neces­
sary and sufficient condition for properties which involve for each 
point set M cardinals "as close as one pleases" to the power of M in 

1 Presented to the Society, December 27, 1939, under the title Separabilities of 
higher orders and related properties. 

la Cf. W. Gross, Zur Theorie der Mengen in denen ein Distanzbegriff definiert ist, 
Sitzungsberichte der Kaiser lichen Akademie der Wissenschaften, part lia, vol. 123 
(1914), p. 801. 

2 References to contributions by Fréchet may be found in his Espaces Abstraits 
et Leur Théorie Considérée Comme Introduction à VAnalyse Générale, Paris, 1928. The 
reader is referred to this treatise for definitions. 

3 W. Sierpinski, Sur Véquivalence de trois propriétés des ensembles abstraits, Funda-
menta Mathematicae, vol. 2 (1921), pp. 179-188. His results hold for more general 
spaces than the spaces 5 he mentions. 

4 A. Appert, Propriétés des Espaces Abstraits les Plus Généraux, Actualités Sci­
entifiques et Industrielles, nos. 145 and 146, Paris, 1934, pp. 82-88. These extensions 
are considered in our Theorem 3. 

6 In Über höherstufige Separabilitat und Kompaktheit, Japanese Journal of Mathe­
matics, vol. 8 (1931), p. 114, Haratomi considers similar properties for the case of a 
metric space, for which they are equivalent; thus, his work is a generalization of 
Gross's. 

6 Concerning limiting sets in abstract spaces II, Transactions of this Society, vol. 43 
(1938), p. 487. 
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connection with such concepts as separability of higher orders, the 
density in M of its limit points of higher orders, the extension of the 
Cantor-Bendixson theorem, and the "almost" perfect compactness of 
M. In Theorem 1 similar equivalences are established for orders 
which are not less than an arbitrary regular cardinal a, provided that 
the following holds: (3') each point set of power a contains a limit 
point of itself. Note that if a is the smallest transfinite cardinal, then 
(3') is a corollary of (3); and, if (3') holds for a certain cardinal, it 
holds for greater cardinals. While our definitions differ from those of 
Appert, they yield a more systematic theory. 

Definitions. If a is a cardinal,7 the point set M is said to be strongly 
a-separable provided that there exists Nsuch that (1) N D MD N, and 
(2) either N is countable or its power is less than8 a. If a is the power 
of M and M is strongly ce-separable, we say that M is semi-separable. 
Thus, for a point set whose power a is aleph-one, the properties sepa­
rability, semi-separability, and strong a-separability are equivalent. 
If M is a point set, P is a point, and a is the smallest cardinal, /?, such 
that there exists a neighborhood of P , [7, for which the power of 
U' (M—P) is /3, then P is a limit point of M of order a. Thus, an iso­
lated point of M has order zero; a limit point has an order greater 
than zero; a condensation point has an order greater than aleph-zero; 
a complete limit point of M has an order equal to the power of M. 
In a space H Fréchet a limit point has an infinite order; at the end of 
this paper we give examples of spaces V Fréchet in which there exist 
limit points of finite orders. A point of M which has an order less 
than a is called an a-isolated point of M. The point set M is said to be 
almost perfectly a-compact in itself provided that if a and S are cardi­
nals, Mo N, a S power of N, and 8 < power of N, then there exists in 
M a limit point of N of an order at least as great as S. M is almost 
perfectly compact in itself provided that if M o N and ô is a trans-
finite cardinal which is less than the power of N, then M con­
tains a limit point of N of an order at least as great as 8; if, instead, 
we require that S be the power of N, then M is perfectly compact in 
itself. Thus, a countable set is almost perfectly compact in itself. 
Because of the equivalence of properties (6) and (1) of Theorem 2, 
if M is almost perfectly compact in itself, the same property holds 

7 In this paper zero and the positive integers are included among the cardinals 
and the ordinals. Also, according to our usage, finite or vacuous sets are countable. 
For the properties of transfinite numbers see F. Hausdorff, Grundzüge der Mengen-
lehre, Leipzig, 1914. 

8 If (2) is modified as follows, M is a-separable: Either Nis countable or its power 
is not greater than a; cf. Appert, loc. cit., p. 83. 
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for each of its subsets; an analogous proposition does not hold for 
perfectly compact sets. Consider the properties of M: (a) it is per­
fectly compact in itself; it is almost perfectly a-compact in itself, 
(b) for a = aleph-zero, or (c) for a = aleph-one; (d) it is almost perfectly 
compact in itself. Then (c) and (d) are equivalent; for, if N is an un­
countable subset of M and 5 < power of N, there exists a transfinite 
cardinal Si such that ô ^ ôi < power of N; the conclusion follows. Each 
element of the sequence (a), (b), (c) implies any that follows it, but 
implies none that precede it. However, for a countable set in a space 
H Fréchet (a) and (b) are equivalent. The following interpretation is 
suggestive: In (d) the power of N is the "upper bound" of the orders 
of the limit points of N which belong to M ; in (a) this bound is 
attained. 

THEOREM 1. Let a be a regular cardinal which is greater than aleph-
zerOy T be a space V Fréchet in which the operation of derivation of point 
sets is distributive* and the symbol M denote an arbitrary point set in 
T. Then the following properties are equivalent. 

(1) Each point set of power a contains a limit point of itself. 
(2) Each point set either is strongly a-separable, or it contains a limit 

point of itself which has an order not less than a. 
(3) If M has a regular power )8 and a ^ / 3 , then either M is semi-

separable or (3 is the power of each of the following subsets of M: (a) that 
of all non-p-isolated points of M\ (b) that of all complete limit points 
of M which belong to M. 

(4) Each point set is almost perfectly a-compact in itself. 
(5) Let a ^(3. (a) The power of the set of all isolated points of M is 

less than /3; (b) the power of the set of all ^-isolated points of M is not 
greater than ]8; (c) if ft < power of if, then M and the set of its non-fi-
isolated points have the same power.10 

PROOF. Clearly, the properties (2) to (5) imply (1). Suppose that 
£ is a point set for which (2) does not hold. Then, for each point P 
of E there exists a subset D(P) of E such that P is not an element of 
the closure of E-D(P), P e D(P), and the power of D(P) is less 
than a. Let T be a well-ordered sequence of the elements of E and S 

9 For example, (E-\-F)'—E'+F'; this is equivalent to assuming that Hausdorff's 
Axioms A and B hold in T. Cf. Fréchet, loc. cit., pp. 172, 173, and 181; and Appert, 
loc. cit., pp. 23-27. A cardinal a is regular if it is not the sum of fewer than a cardinlas, 
each of which is distinct from zero and is less than a; cf. W. Sierpinski, Hypothèse du 
Continu, Warsaw and Lwow, 1934, p. 152. With different hypotheses Appert obtains 
a result similar to part (5); loc. cit., p. 90. 

10 /3 is not necessarily regular. 
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be the smallest ordinal in the number class11 Z(a). We shall define a 
well-ordered sequence U = (qi, q^ • • • , <Z«, <Zw+i, • • • , qp, • • • ) where 
0 < 8 . 

Proceed as follows : Let q\ be the first element of T. Let ]8 be an 
ordinal which is greater than unity and is less than 5 ; suppose that qx 

has been defined for all ordinals x</3, and let Up be the set of all 
such qxs; let Sp=^D(qa), for x<(3. Let qp be the first point of T 
which does not belong to the closure of Sp. 

We shall show that qp exists for all ordinals /3 < 6. For, if there exist 
jS's for which this is not true, there exists a smallest one, say X. Then 
each point of E belongs to the closure of S\. Then the power of U\ 
and the powers of each of the sets D(qx) for x <X are each less than ce. 
Since a is regular, the power of 5\ is less than ce. Then, in contradic­
tion to our supposition, E is strongly ce-separable. Thus, X does not 
exist, and the power of U is ce. 

By definition qp is not a point or a limit point of Sp D Up. Further, 
5^+1, which contains D(qp)y contains no point of U— Up+i; thus qp is 
not a limit point of the latter. Since the operation of derivation is dis­
tributive and U=qp+Up + (U— Up+i), it follows that all points of U 
are isolated in U. This contradicts (1); thus (1) implies (2)* 

Let K be the set of all non-/3-isolated points of M, and suppose that 
the power of K is less than /3. Then the power of M—K — L is /3. Since 
L contains no limit point of itself of an order as great as /3, it follows 
by (2) that there exists a subset H of L which is dense in L and has a 
power less than /3. Then H+K is dense in M and has a power less 
than j8. Thus, M is semi-separable, and (2) implies (3a) ; (3b) is (3a) 
for the case /3 = power of M. 

Suppose that (4) does not hold. Then there exist two point sets, 
M and N, and two cardinals, /Si and e, such that a ^j3i = power of N, 
e <]8i, MD N, and N has no limit point in M of an order as great as e. 
Let €i be the smallest cardinal which is greater than e, ]3 be the larger 
of a and ei, and ô be the smallest ordinal in the number class Z(/3). 
Then /3 is regular and does not exceed /Si. Let F be a subset of N 
having the power /3; since N D F, M contains no limit point of F of an 
order as great as e. We shall define a well-ordered collection G of sub­
sets of F such that the order type of G is 5: G=(Fi, F2, • • • , Fuy 

- • • , ^w , • • • ), where m<8. 
Proceed as follows : Let T be a well-ordered sequence of all subsets 

of F, and FQ be the null set. Suppose that m is an ordinal such that 
m < 8 and Fx has been defined for all ordinals x which are less than m; 

11 Cf., F . Hausdorff, loc. cit., pp. 124-125. 
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let 2)m=]C^*> for x<m; let Fm be the first element of T which has a 
power less than /3, which is a subset of F— 2W, and which is dense in 
F-2m. 

Suppose that the order type of G is X, where X < S. Since /3 is a regu­
lar cardinal, it follows that the power of 2X is less than /?, and that 
of F—2\ is j8. Since F contains no limit point of itself of an order as 
great as e, it follows from (2) that F— 2x is strongly /3-separable. Then 
F\ exists; and the supposition that X exists involves a contradiction. 

Let X be the smallest ordinal in the number class Z(e), P e F\, and 
U be a neighborhood of P. Let x and y be ordinals such that x <y ^X. 
Then 2„ D Fx\ since F— 2 y D FV) the product FxFy is vacuous. Since 
2yD 2*, F— 2 * D F— 2yD 7^; then P* is dense on Fv. Thus for x<\ 
the product U- Fx is nonvacuous. Hence, the power of U- 2 \ is at least 
as great as e. Thus, we are involved in a contradiction, and (2) im­
plies (4). 

Property (1) implies (5a). Let Mb be the set of all /3-isolated points 
of M, and suppose that its power exceeds /3. Let ft be the smallest 
cardinal which is greater than ft Then ft is regular, and by (4) each 
subset of Mb having power ft contains a limit point of itself of order at 
least as great as /?. Thus, we are involved in a contradiction; and (4) 
implies (5b), which implies (5c). Since (1) and (4) are equivalent, 
(4) implies (5). 

THEOREM 2. In a space V Fréchet in which the operation of derivation 
of point sets is distributive, the following are equivalent: 

(1) Each uncountable set contains a limit point of itself. 
(2) Each point set either contains a condensation point of itself, or it 

is separable. 
(3) Each point set which has a regular power either is semi-separable, 

or it contains a complete limit point of itself. 
(4) Each point set either is separable, or it has the same power as the 

set of all its condensation points which belong to it. 
(5) Each point set which has a regular power either is semi-separable 

or it has the same power as the set of all its complete limit points which 
belong to it. 

(6) Each point set is almost perfectly compact in itself. 
(7) Part (5) of Theorem 1 holds f or each transfinite cardinal 13 such 

that aleph-zero </?. 

PROOF. This may be established by letting the a of Theorem 1 be 
aleph-one. In particular, to establish (4) apply the following parts of 
Theorem 1 : (a) Part (3b), if aleph-one = power of M\ (b) part (5c), if 
aleph-one < power of M. 
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THEOREM 2A. The following modification of Theorem 1 is permissi­
ble: (I) Allow a to be any regular cardinal which is greater than unity] 
(II) replace the property "M is strongly a-separable" by the following: 
"there exists N such that TV D MD N and that the power of N is less 
than a. " 

Note that the only finite cardinal which satisfies (I) is a = 2. Except 
for obvious modifications, the proof is like that of Theorem 1. Note, 
however, the following: In considering the proof for (3) for the case 
power of M = 2 , let P £ M- M'\ then M—P is dense in M. 

The following theorem gives relations between Appert's work and 
ours. 

THEOREM 3. Let /? be transfinite, a be the cardinal which is next great­
est to j8, and T be a space V Fréchet. Edch of the following implies prop­
erty (1) of Theorem l.12 

( 1 ) T is ^-perfectly separable. 
(2) Each point set in T is ^-separable. 
(3) Each point set in T possesses the Lindelof property of order j8. 
(4) Each point set of T is ^-condensed in itself.1* 

Comment. If M is a point set in the space T of Theorem 1 and 
a^\<power of M, then by (4) of tha t theorem M contains a limit 
point of itself of an order at least as great as X; that is, the upper 
bounds of the aggregates of the orders of the limit points which are 
involved in property (1) are the powers of the sets M concerned. 
Further, if (1) holds for a given cardinal, it and the properties equiva­
lent to it hold for all greater cardinals. If a is an arbitrary cardinal 
which is greater than unity, whether finite or transfinite, the following 
example establishes the existence of a space T such that a is the 
smallest cardinal for which (1) holds relative to T. 

Let a and /3 be cardinals such that ce </3; let Sap be a space whose 
points are the elements of an aggregate, of power /?, and in which the 
set U is a neighborhood of the point P if and only if the following 
conditions hold: (1) P e U; (2) the power of the complement of U is 

12 The converse is not true. Note that in Theorem 1 we have the additional hy­
pothesis that the operation of derivation of point sets be distributive. 

13 Property (1) means that T has a basis of a power that does not exceed 0. Prop­
erty (3) means that if a collection G of sets covers the point set M, then there exists H 
such that GD H, H covers M, and the power of H does not exceed 0. The set M is 
/3-condensed in itself provided that if a is the smallest cardinal which is greater than /3, 
M 3 K and power of K = a, then there exists a point P of M such that if U is a neigh­
borhood of P then a is the power of the product of K and the interior of U. Cf. 
Appert, loc. cit., pp. 82-88. 
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less than a, and is zero if a is finite* The following are properties of 
this space: (A) if a^aleph-one, no point set of power a or greater is 
strongly a-separable ; (B) if a <X and power M=X, then M is strongly 
X-separable; (C) if a g power M, then each point of M is a complete 
limit point of M\ thus property (1) of Theorem 1 holds; (D) if a is the 
smallest transfini te cardinal, the space is perfectly compact; (E) if a 
is transfinite, the space is a space H Fréchet; (F) the space satisfies 
the hypothesis of Theorem 1, for ce any cardinal.14 To establish (A) 
let power M^a, MoN, power N<a,Pz(M-N) ; then P + (S a / 3 -N) 
is a neighborhood of P , and P is not a limit point of N. To establish 
(B) let MD N, a<power M, a^power N<power M9 P e (M — N), 
and U be a neighborhood of P ; then power of N- (Sap— U) <a, and 
N' U is non vacuous; thus P is a limit point of N and iV is dense in M. 
A consideration of the property "almost perfect compactness" sug­
gests the question: Does there exist a space in which each infinite 
point set contains a complete limit point of itself? F. B. Jones gave 
an answer in the affirmative by suggesting the example in (D). If a 
is finite, each nonvacuous point set in Sap contains a complete limit 
point of itself. 

In Theorem 2, part (2), we consider two alternative properties, of 
which not more than one is required for each point set. For each of 
these properties Sierpinski15 gave an example of a space in which each 
point set has the given property, but not the alternative property. 
By taking the sum of his two spaces we have one in which the prop­
erty that holds for a point set varies with the set. I t would be inter­
esting to give an example of a space for which (2) holds and for which 
each point set that satisfies one of the alternative conditions but not 
the other has a subset relative to which the converse is true. 

T H E UNIVERSITY OF T E X A S 

14 Cf. Appert, loc. cit., p. 25, and Fréchet, loc. cit., p. 186. 
18 Loc. cit., Fundamenta Mathematicae, vol. 2. 


