
THE CONFORMAL NEAR-MOEBIUS TRANSFORMATIONS1 

EDWARD KASNER AND JOHN DE CICCO 

1. Introduction. In a previous paper,2 we discussed the point trans­
formations of the plane with reference to the maximum number of 
circles preserved. A nonconformal point transformation of the com­
plex plane converts at most 2oo2 circles into circles.3 A conformai 
transformation, not of the Moebius type, carries at most 2 oo1 circles 
into circles (excluding the 2 oo1 minimal lines which become minimal 
lines). A Moebius transformation carries the entire family of oo3 

circles into circles. From these results, we obtain the following two 
characterizations of the group of Moebius transformations: (1) if 3 oo2 

circles are carried into circles after a point transformation, then the 
same is true for all circles, and the point transformation is therefore 
a Moebius transformation; and (2) any conformai transformation 
which converts 3 oo 1 circles into circles is a Moebius transformation. 

In this paper, we shall determine the set of all conformai near-
Moebius transformations. That is, we shall obtain the set of all con-
formal transformations which convert exactly 2 oo 1 circles into circles. 
Any conformai near-Moebius transformation is of the form M%TMX 

where M\ and Mi are Moebius transformations and T is any one of the 
three transformations ez, log z, zn. The two families preserved are two 
orthogonal pencils of circles. 

The conformai near-collineation problem4 is a special case of our 
problem. Any conformai near-collineation is of the form S1TS2 where Sx 

and Si are similitudes and T is any one of the three transformations 
ez, log z, zn. The family preserved is a pencil of straight lines (besides 
the 2 00 l minimal lines). 

1 Presented to the Society, February 24, 1940. 
2 Kasner and De Cicco, Characterization of the Moebius group of circular trans­

formations, Proceedings of the National Academy of Sciences, vol. 25 (1939), pp. 209-
213. 

3 In the previous paper, we derived these results for the point transformations of 
the real cartesian plane. But these same results may easily be derived for the complex 
cartesian plane without any difficulty. Note that a given family F of geometric con­
figurations in the complex cartesian plane is said to possess 00 » configurations if each 
of these is determined uniquely by n complex constants. 

4 Kasner, The problem of partial geodesic representation, Transactions of this So­
ciety, vol. 7 (1906), pp. 200-206. Also see Kasner, The characterization of collineations, 
this Bulletin, vol. 9 (1903), pp. 545-546; and Prenowitz, The characterization of plane 
collineations in terms of homologous families of lines. Transactions of this Society, 
vol. 38 (1935), pp. 564-599. 
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For our purposes, we shall find it convenient to define a point by 
the minimal coordinates (u, v) instead of the usual cartesian coordi­
nates (x, y). The minimal and cartesian coordinates of the complex 
cartesian plane are connected by the two independent linear relations 

(1) u = x + iy, v = x — iy. 

2. The form of the differential equation of the two invariant fami­
lies (2 oox) of circles. In minimal coordinates, the oo3 circles (excluding 
the oo2 points and the 2 oo* minimal lines) of the complex plane are 
represented by the oo3 hyperbolas which possess as asymptotes the 
minimal lines u — const., and v = const. Thus the family of oo3 circles 
is given by the equation 

(2) a0uv + a\U + a^v + az = 0, 

where a0, ai, a2, a3 are complex constants such that either a0(aia2 —a3) 
5^0 or a0 = 0, aia27^0. From this equation, it follows that the differ­
ential equation of the third order of the entire family of oo3 circles is 

(3) 2pp" = 3p'2, p = dv/du. 

To obtain the set of conformai (direct and reverse) near-Moebius 
transformations, it is only necessary to obtain the set of direct con-
formal near-Moebius transformations. For any reverse conformai 
near-Moebius transformation is the product of a direct conformai 
near-Moebius transformation by a reflection through the x axis 
(the straight line u+v = 0). Hence, in what follows, we shall only con­
sider the set of direct conformai near-Moebius transformations. 

In minimal coordinates, any direct conformai transformation is 
given by 

(4) U = 0(w), V = M ) , 4>ufv * 0. 

Upon extending this conformai transformation three times, we obtain 

(5) 

tv , , >Pvv 0 ^v<t>uu 

p' — —p'-\ />2 p 
. 2 f ' -2 ^ . 3 ^ ' 

<Pu <Pu <Pu 
$v ,, 3\f/vv tyv<t>uu , tvvv n 3\i/vv(l>uu 

P = Ti * + I T PP 7T-* +^J~P —J— 
2 

$v<l>uuu tyv<l>uu\ 

+ 1 7 Ï - + ——)P-
(Pu 
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For those circles which become circles under our conformai trans­
formation, we know that the differential condition (3) must be 
preserved. Upon applying these conditions to our conformai trans­
formation, we obtain the following theorem. 

THEOREM 1. The only possible circles which become circles under the 
conformai transformation (4) (not of the Moebius type) are the 2 oo l 

circles whose differential equation is of the form 

2 2 
— 3<t>uu) 

(6) p2 = • 

We note that the two families (2 <*>l) of circles (if they exist) are 
orthogonal. 

3. The 2 oo1 circles whose differential equation is of the form (6). 
The two families of circles are given by a differential equation of the 
form 

y(u) 
(7) P = ± 

«GO 
We shall find all families of circles whose differential equation is of 
this form. By means of the Moebius transformations, we shall reduce 
our results to canonical forms. 

For the time being we shall consider only the plus sign. We observe 
first that neither y nor b can be zero. For then the circles would be 
the minimal lines u or v= const. These are excluded from considera­
tion. 

Upon taking the first and second derivatives of (7), we obtain 

7M 72àv 

Ô 
P' = — - — > 

( 8 ) „ 
„ __ 7uu Syyuôv y ôvv 3y ôv 

Substituting (7) and (8) into (3), we find that (7) represents the differ­
ential equation of 2 ool circles if and only if 

2 2 

2yyuu ~ 3yu 2ôôvv — 3ôv 

~i = J* 

This equation will be true if and only if each side is equal to the 
same complex constant a2. Hence 
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2 2 4 2 2 4 

(10) 2yyuu — Syu = « 7 , 2dövv — 3öv = a à . 

We proceed to discuss the solution of these two differential equations. 
We shall divide this discussion into several parts. 

Case A. Let a = Q. In this case, the equation (7) represents two orthogo­
nal parabolic pencils of circles (or their Moebius equivalents). By a 
Moebius transformation, these may be reduced to the two orthogonal 
parallel pencils of straight lines 

(A') v = ± u + const. 

Hence the canonical form of the differential equation (7) for Case A is 

(A) f=\. 

(I) First let neither y nor S be constants. Then (10) may be written 
in the form 

<"> '=®-®'. 'Ï(T)-(T)"-
The integration of these yields 

b c 
(12) 7 = ~ -> 5 = 

(u — Uo)2 (v — v0)
2 

where «0, v0, b> c are constants. Substituting these into (7) and inte­
grating the resulting differential equation, we find 

c b 
(13) = ± h const. 

V — Vo U — UQ 

These are two orthogonal parabolic pencils of circles. By an appro­
priate Moebius transformation, we can convert (13) into (A')- Hence 
the canonical form of our differential equation (7) for this case is (A). 

(II) Next let 7 and ô be constants. By integrating (7), we find that 
the two families are two orthogonal parallel pencils of straight lines 
(which are equivalent by a Moebius transformation to two orthogo­
nal parabolic pencils of circles). By a similitude, we can carry these 
into (A'). Hence the canonical form of (7) in this case is also equa­
tion (A). 

(III) Let 7 be not constant and S constant. We find that y and S 
are given by 

- b 
(14) 7 = ~ > ô = const., 

(u — uo)2 
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where u0 and b are constants. Substituting these into (7) and inte­
grating, we obtain 

b 
(15) ôv = ± h const. 

u — u0 

The first family consists of all circles of the same radius r = (b/ô)1/2 

and with centers on the minimal line u = u0. The orthogonal family 
consists of all circles with centers on the minimal line u = Uo and of 
radius ir. These two families of circles have the same radical axis, 
namely, their common line of centers u = u0. Also these circles are 
tangent (and orthogonal) to each other at the point at infinity on this 
minimal line u = u0. 

These two families are equivalent by a Moebius transformation to 
two orthogonal parabolic pencils of circles. By an appropriate 
Moebius transformation, these two families (15) can be carried into 
the two orthogonal parallel pencils of straight lines (A')- Hence the 
canonical form of (7) in this case is also (A). 

(IV) Finally let y be constant and S not constant. Then y and S 
are given by 

c 
(16) 7 = const., ô = • 

(v — vo)2 

Substituting these into (7) and integrating the resulting differential 
equation, we find 

c 
(17) = ± yu + const., 

where v0 and c are constants. 
The first family consists of all circles of the same radius r = (c/y)1/2 

and with centers on the minimal line v = v0. The orthogonal family 
consists of all circles with centers on the minimal line v = Vo and of 
radius ir. The two families of circles have the same radical axis, 
namely, their common line of centers v =VQ. Also these circles are tan­
gent (and orthogonal) to each other at the point at infinity on this 
minimal line v = v0. 

These two families are equivalent by a Moebius transformation to 
two orthogonal parabolic pencils of circles. By an appropriate Moe­
bius transformation, these two families (17) can be converted into 
(A'). Thus the canonical form of (7) in this case is again (A). 

Case B. Let a9^0. In this case, the differential equation (7) represents 
two orthogonal nonparabolic pencils of circles (or their Moebius equiva-
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lents). By a Moebius transformation, these may be reduced to the 
pencil of straight lines with vertex at origin and to the pencil of con­
centric circles with their common center at the origin 

(B') v/u = const., uv — const. 

Hence the canonical form of the differential equation (7) for this case 
is 

(B) p2 = v2/u2. 

In this case, 7 (and ô) cannot be constant. Let X=77M. The first 
of equations (10) can be written in the form 

(18) 27XX7 - 5X2 = a2yQ. 

Multiplying this by 7 - 6 and integrating, we find 

(19) X2 = 75(a27 + 2b), 

where a and b are constants. Replacing X by 77^, this equation (and 
a similar equation for ô) can be written in the form 

(20) yu = y\a2 + Ib/y)^2, dv - d2(a2 + Ic/bY'2, 

where a, ô, c are constants. 
(I) Let neither b nor c be zero. The preceding equations then yield 

2b 2c 
(21) 7 = : > 5 = 

b2(u — Uo)2 — a2 c2(v — Vo)2 — a2 

Substituting these into (7) and integrating, we obtain the two fami­
lies of circles 

b(u — u0) — a 
= const. ) 

-v, , ~ b(u — Uo) + a 
(22) 

c(v • 

c(v • 

c(v • 

- vo) — 

-Vo) + 

- vo) — 

a 

a 

a b(u — Uo) + a 
= const. • 

c(v — vo) + a b{u — Uo) — a 
These two families represent two orthogonal nonparabolic pencils 

of circles. The circles of the first family are those passing through 
the two points (uo+a/b, v0+a/c) and (uo — a/b, v0 — a/c). The cir­
cles of the second family are those passing through the two points 
(uo+a/b, Vo — a/c) and (u0 — a/b, v0+a/c). 

The two orthogonal nonparabolic pencils of circles (22) have the 
same center (#0> flo). This is the intersection of the two orthogonal 
radical axes and of the two orthogonal lines of centers. If d is the 
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distance between the two fixed points of the first pencil of circles, then 
id is the distance between the two fixed points of the second pencil. 
These properties are characteristic for two orthogonal nonparabolic 
pencils of circles. 

By an appropriate Moebius transformation, the two families (22) 
can be converted into (B'). Thus the canonical form of the differential 
equation (7) for this case is (B). 

(II) Let 6 = c = 0. From (20), we find 

1 1 
(23) 7 = > ô = a(u — u0) a(v — Vo) 

Substituting these into (7) and integrating, we obtain the two fami­
lies of circles 

v — Vo 
(24) = const., (u — UQ)(V — v0) = const. 

u — u0 

The first family is a pencil of straight lines with vertex at (uo, Vo). 
The second family is a pencil of concentric circles with the common 
center at (uof v0). By an appropriate translation, these two families 
can be carried into (B')« Thus, in this case, the canonical form of the 
differential equation (7) is (B). 

( I l l ) Let b = 0 and C5*0. In this case, we have 

2c 
(25) 7 = > d = — 

a(u — u0) c2(v — Vo)2 — a2 

Substituting these into (7) and integrating, we find the two orthogo­
nal pencils of circles 

(26) 

c[v -
c(v -

c(v -

- vo) — 

-Vo) + 

- Vo) — 

a 
a 

a 

const, (u — u0) y 

1 
= const. 

c{v — Vo) + a u — Uo 

The circles of the first family are those passing through the point 
(uot Vo+a/c) and the point at infinity on the minimal line v=v0 — a/c. 
The circles of the second family are those passing through the point 
(uo, Vo—a/c) and the point at infinity on the minimal line v =Vo+a/c. 

The radical axis and the line of centers (or the line of centers and 
the radical axis) of the first (or second) family of circles are respec­
tively the minimal linesfl=fl0+fl/cand v=v0 — a/c. 
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Under the group of Moebius transformations, these two families 
are equivalent to any two orthogonal nonparabolic pencils of circles. 
By an appropriate Moebius transformation, these two families can be 
converted into (B'). Thus the canonical form of the differential equa­
tion (7) for this case is (B). 

(IV) Let 6 ^ 0 and c = 0. The two families of circles are then 

b(u — Uo) — a b(u — u0) + & 
(27) v — VQ = const. ; v — vo = const. 

b(u — Uo) + a b(u — uQ) — a 
The circles of the first family are those passing through the point 

(uo+a/b, Vo) and the point at infinity on the minimal line u = u0 — a/b. 
The circles of the second family are those passing through the point 
(uo—a/b, Vo) and the point at infinity on the minimal line u = u0-\-a/b. 

The radical axis and the line of centers (or the line of centers and 
the radical axis) of the first (or the second) family of circles are re­
spectively the minimal lines u = Uo+a/b and u = Uo~~a/b. 

Under the group of Moebius transformations, these two families 
are equivalent to any two orthogonal nonparabolic pencils of circles. 
By an appropriate Moebius transformation, these two families can be 
converted into (B')« Thus the canonical form of the differential equa­
tion (7) for this case is (B). 

Thus in all cases, we have proved the following theorem : 

THEOREM 2. The only 2 00l circles whose differential equation is of 
the form (7) are two orthogonal pencils of circles. Under the group of 
Moebius transformations, these may be classified into two distinct types: 
(1) two orthogonal parabolic pencils of circles and (2) two orthogonal 
nonparabolic pencils of circles. 

The canonical forms of the differential equation (7) of types (1) 
and (2) are respectively (A) and (B). 

4. The conformai near-Moebius transformations. We now proceed 
to find the conformai near-Moebius transformations. First it is seen 
that the inverse N~l of any conformai near-Moebius transformation N 
is also a conformai near-Moebius transformation. For since N is a one-
to-one correspondence which carries 2 00l circles into circles, it follows 
that the transformed circles must be 2 <x>x in number. Hence the in­
verse iV-1 carries 2 00* circles into circles, and therefore it must be a 
conformai near-Moebius transformation. 

Let N be any conformai near-Moebius transformation. Then there 
exist exactly 2 00 1 circles which are preserved by N. Denote these cir­
cles by 7 and their transformed circles under N by T. That is, 
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N(y) = T, and y = N"1^). By Theorems 1 and 2, we find that y and V 
are each two orthogonal pencils of circles. 

Let Yo denote the canonical form (A') and (A), or (B') and (B) of 
two orthogonal parabolic, or nonparabolic, pencils of circles. Let Mi 
by any Moebius transformation which carries the two orthogonal 
pencils of circles y into the canonical form 70, and let Af2 be any 
Moebius transformation which converts the canonical form 70 into 
the two orthogonal pencils of circles Y. Then the transformation 
T = MrlNMrl preserves the canonical form 70 of two orthogonal 
pencils of circles. Hence any conformai near-Moebius transformation 
N is of the form M2TM± where Mi and M"2 are Moebius transformations 
and T is any conformai near-Moebius transformation which preserves 
the canonical form 70 of two orthogonal pencils of circles. 

Next we shall show that any transformation T which preserves 
the canonical form 70 of two orthogonal pencils of circles must be 
one of the three types: (1) U = beau, V = ce±av; (2) U = a log u+b, 
V— ±a log v-\-c\ and (3) U = bun, V = cv±n. Obviously T converts 
either (I) (A) into (A), or (II) (A) into (B), or (III) (B) into (A), or 
(IV) (B) into (B). 

(I) Let T convert (A) into (A). The differential equation p2 = l 
must be preserved. For this to be so, we find that T must be of the 
form U = au+b, V= ±av+c where a^O, b, c are constants. This of 
course is a simple case of the Moebius transformations. Hence we con­
clude that there are no conformai near-Moebius transformations which 
preserve two orthogonal parabolic pencils of circles. 

(II) Let T convert (A) into (B). The differential equation p2 = l 
is converted into P2 = V2/U2. For this to be so, we find that T must 
be of the form U = beau, V = ce±av, where a, &, c are nonzero constants. 
Hence we conclude that any conformai near-Moebius transformation N 
which carries two orthogonal parabolic pencils of circles into two orthogo­
nal nonparabolic pencils of circles must be of the form M2TM1 where Mi 
and M2 are Moebius transformations and Tis the transformation U = eu, 
V = e\ 

(III) Let T convert (B) into (A). The differential equation 
p2 = v2/u2 is converted into P 2 = l. Hence T must be of the form 
U = a log u+b, V= ±a log v+c> where a?^0, b, c are constants. Thus 
we conclude that any conformai near-Moebius transformation N which 
carries two orthogonal nonparabolic pencils of circles into two orthogonal 
parabolic pencils must be of the form M1TM1 where Mi and Mi are Moe­
bius transformations and T is the transformation 17 = log u> F= log v. 

(IV) Let T convert (B) into (B). The differential equation 
p2=v2/u2 must be carried into the differential equation P 2 = V2/U2. 
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Hence T must be of the form U = bun, V = cv±n where n,b,c are nonzero 
constants. Thus any conformai near-Moebius transformation N which 
carries two orthogonal nonparabolic pencils of circles into two orthogonal 
nonparabolic pencils of circles must be of the form M2TM1 where Mi 
and M2 are Moebius transformations and T is the transformation 
U = un, V = vn with n a complex nonzero constant. 

We therefore obtain from the preceding results the following: 

THEOREM 3. Any conformai near-Moebius transformation N of the 
complex cartesian plane is of the f or m M2TM1 where Mi and Af2 are 
Moebius transformations and T is any of the three transformations 
(1) U = eu, V = ev;(2) U = logu, V = log v; and (3) U = un, V = vn(na 
complex nonzero constant). 

In this paper, we have given all the conformai near-Moebius trans­
formations, that is, all the conformai transformatons which preserve 
exactly 2 00x circles. In a later paper, we shall give the set of all non-
conformal near-Moebius transformations, that is, the set of all non-
conformal transformations which preserve exactly 2 002 circles. 
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