
ON LINEAR POLYGON TRANSFORMATIONS1 

JESSE DOUGLAS 

1. Introduction, definitions. In a recent paper2 the author has de­
veloped a general theory of linear transformations of polygons, re­
garded as lying in the complex plane. By a polygon we understand a 
system of points, or complex numbers: (zi, z2> • • • , zn), called ver­
tices, which are taken in a definite cyclic order. This is to say that 
two n-gons, (zi, z2l • • - , zn) and (wi, w2, • • • , wn), are the same when 
and only when Zi = Wi+k for i = l , 2, • • • , n, where k has any fixed 
one of the values 0, 1,2, - - - , n — 1 and all indices are taken modulo 
n. To be distinguished from a polygon is a multipoint, where the defi­
nition of equivalence is the identity of corresponding points in the 
order given: Zi = Wi for i= 1, 2, • • • , n. 

A linear multipoint transformation is simply the general linear 
transformation of n complex variables: 

n 

(1) z/ = J2 aijZh i = 1, 2, • • • , n, 
2 = 1 

where the coefficients a^ may be any complex numbers. For a linear 
polygon transformation, on the other hand, a certain cyclicity is re­
quired : a cyclic permutation of the s's must produce the same cyclic 
permutation of the z"s. Thus we may write down arbitrarily the first 
line of an L.P.T. :3 

Zi = OLQZI + OL1Z2 + • • • + (Xr-lZry 

1 Presented to the Society, October 29, 1938, under the title Geometry of polygons 
in the complex plane, 

2 Geometry of polygons in the complex plane, Journal of Mathematics and Physics, 
vol. 19 (1940), pp. 93-130, and this Bulletin, abstract 44-9-390. See, as a preliminary 
to the present theory, papers by E. Kasner and his students in Scripta Mathematica, 
vol. 2 (1934), pp. 131-138, and vol. 4 (1936), pp. 37-49. Kasner considers the polygon 
derived from a given one by taking the midpoint of each side, and, more generally, 
by taking the centroid of r consecutive vertices. These are special linear polygon trans­
formations (2), where ao = ai = • * • — a r-i —1/*\ Kasner uses real cartesian coordi­
nates, and his polygons may lie in euclidean space of any number of dimensions. 

The basic ideas of the present paper are (i) to regard the polygons as lying in the 
complex plane, (ii) to consider general linear polygon transformations (2) with any 
complex coefficients. As pointed out in §1, this is equivalent to taking a "center of 
gravity" with complex "weights." 

The author delivered a series of lectures on the present topic at Columbia Uni­
versity in July, 1939. 

8 L.P.T. denotes "linear polygon transformation" throughout this paper. 

551 



552 JESSE DOUGLAS [June 

but then the whole transformation is determined by cyclic permuta­
tion, that is: 

(2) Zh = OL0Zk + OCiZk+1 - } " • • • + (Xr-lZk+r-l, k = 1, 2, • • • , ft, 

where the indices of z are to be taken modulo n. Here r may have any 
value from 1 to n inclusive, and we may suppose «o^O,4 ar_i7^0, the 
transformation being then called r-ary. If r<n, we may fill out for­
mula (2) to the general form (1) by using zero coefficients in each line 
of (2) for those JS'S which do not effectively appear. 

Formula (2) represents the general linear polygon transformation L.5 

Its characteristic property is to be transformed into itself by a cyclic 
permutation C=(s i , z%, • • • , zn) of the s's: C~lLC = L, or to be com­
mutative with such a permutation: CL=LC. Since C~1LC = L and 
CrxL'C = V imply by multiplication C^LL''C = LL'', it follows that 
the product of two L.P.T.'s is again an L.P.T. Thus, all L.P.T.'s for 
a given value of n form a group,6 a subgroup Gn of n complex parame­
ters in the total linear group Gn

2 of n2 complex parameters repre­
sented by (1). In §2 another proof of the same fact will appear 
(Theorem II) . 

Particularly interesting are the special L.P.T.'s, to be denoted by 
M, for which 

(3) a0 + ai + • • • + <Xr-i = 1. 

As is immediately verifiable, (3) is the necessary and sufficient condi­
tion that a given L.P.T. (2) be permutable with an arbitrary simili­
tude transformation S: z' =Az+B (A, B complex) ; that is, MS = SM, 
or S~1MS = MJ for every S and every M. I t follows, as in the preced­
ing paragraph, that the transformations M form a group, a subgroup 
Gn_i of the group Gn of all L.P.T.'s. 

If the polygon P' is the image of the polygon P by any transforma­
tion M, the remarks just made state that the relation between P 
and P' is invariant under an arbitrary similitude transformation; we 
may say that P' is a "similitude concomitant" of P . Accordingly, we 
shall term any L.P.T., My which obeys the condition (3) a similitude 

4 Evidently we can always bring about a 0 ^ 0 by cyclic renumbering of the ver­
tices z. 

5 We dispense with the consideration of nonhomogeneous L.P.TVs, since these 
have the same constant term in each, line and therefore differ from a homogeneous 
L.P.T. only by a translation. 

8 It should be emphasized tha t here, and throughout this paper, we use the term 
"group" only in the sense of possession of the specific group property: closure with 
respect to composition of elements. Since the determinant of an L.P.T. may be zero, 
an inverse transformation does not always exist. 
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construction on the polygon P = (zi, z2, • • • , zn) and a binary, ter­
nary, • • • , r-ar^y S.C.7 according as two, three, • • • , r consecutive 
vertices of P are effectively involved in the formula (2) of the trans­
formation ("effectively" meaning ao 5^0, ce r_i^0). 

If furthermore the a's are real, then, as is easily verified, we have 
for every affine transformation a, that is, z' = Az+Bz + C (A, B, C 
complex, z the conjugate of z), the relation a~1Ma = M or Ma = aM. 
The polygon P' is then an "affine concomitant" of the polygon P ; 
accordingly, for real values of the a's obeying (3), we term M an 
affine construction. 

Evidently, under the condition (3), we can consider that (2) de­
fines Zk as a kind of "center of gravity" of Zk, %k+i, * • * , Zk+t-i with 
complex "weights" proportional to ao, ai, • • • , a r_i. In the case of an 
affine construction, where the weights a are real, we have an actual 
center of gravity in the ordinary sense. 

We may observe here, as in our cited paper,8 that the centroid of 
any polygon is invariant under any S .C, M. For by addition of all 
the equations (2), 

, N z{ + z{ + • • • + zi 
(3a) 

= («o + on + • • • + ar-i)(*i + z2 + • • • + zn); 

then take account of (3) and divide by n. 
Of special importance is the binary S .C, M2\ 

(4) z{ = a0Zk + aiZk+i, k=l,2,---,n, 

(4') « ( > + « ! = 1. 

The point z{ is here determined by the simple geometric condition 
that the triangle (zk, Zk+i, z{ ) is directly9 similar to the fixed triangle 
( — ai, a0, 0). This is seen by considering the equations in A, B 

(5) zk = — otiA + B, zk+i == aQA + B, zi = B, 

whose solvability is the condition for the existence of a similitude 
transformation z' =Az+B converting the triangle (—c*i, ao, 0) into 
(Zk, Zk+i, Zk ). By use of (4 ;), the solution of the first two of these equa­
tions is 

A = Zk+i — Zk, B = aoZk + otiZk+i) 

7 S.C. is "similitude construction" throughout this paper. 
8 In this way we shall always refer to the paper whose title is given in the first 

footnote. 
9 Tha t is, with preservation of sense. 
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and then equation (4) expresses exactly that the third equation (5) 
is satisfied. 

If ce0, OLI are real, the point z{ lies upon the side ZkZk+i and divides 
it in the fixed ratio zkzi \z{Zk+i = ai'oco. 

2. L.P.T. 's and cyclic matrices. The matrix of the general L.P.T. 
is a cyclic matrix 

(6) 

where the circular derivation of each row from the preceding is the 
characteristic feature. Any number of the ce's may be zero, so that 
the L.P.T. can be r-ary with r = l , 2, • • • , n. We shall speak inter­
changeably of an L.P.T., L, and its corresponding cyclic matrix L. 

The simplest L.P.T. is a cyclic permutation of vertices, C: 

aQ 

CCn-l 

Otn-2 

Oil 

Oil 

ao 

OLn-l 

a2 

ax - -

a0 • • 

' « n - 2 

' Otn-i 

OLn-l 

Oin-2 

Oin~Z 

ao 

Z\ = 22 , Z2 = Sa, 

As a matrix, this is 

, %n— 1 — # n , Zn — 2»i. 

c = 

1 ° * 
0 0 

0 0 

1 1 0 

0 • 

1 • 

• • 0 1 

• • o ! 

• • 1 

• • 0 I 
We may say that C has l 's in its second "cyclic diagonal" and 0's 
everywhere else. In general, as is seen at once, Ck has l 's in its 
(& + l ) th cyclic diagonal and 0's elsewhere. Obviously, Cn = I , the 
identity matrix, which has l 's in its first (cyclic) diagonal and 0's 
elsewhere. 

From these remarks we have directly by comparison with (6) : 

(7) L = a0I + aiC + a2C
2 + • • • + «n- iC^ 1 . 

Conversely, every polynomial in C of this form represents a cyclic 
matrix, namely the one whose first, or generating, row consists of the 
coefficients of the polynomial in order. Hence we have the following 
theorem. 
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THEOREM I. The necessary and sufficient condition that an n-rowed 
square matrix L be cyclic is that it be expressible as a polynomial of de­
gree n — 1 at most in the matrix C of a cyclic permutation. This mode of 
representation of L is unique. 

If in (7) we replace C by a (complex) numerical variable x, and I 
by 1, we obtain a polynomial <f>(x)=a0+aix+ • • • +an-ix

n-1, that 
we shall term the auxiliary polynomial10 of L. 

If any two polynomials of the form (7) are multiplied together, the 
product can be reduced to the degree n — 1 at most by means of the 
relation Cn = I. From this remark and Theorem I the following three 
theorems result immediately. 

THEOREM I I . The product of two cyclic matrices is again a cyclic 
matrix. 

THEOREM I I I . The multiplication of cyclic matrices is isomorphic 
with the multiplication of their auxiliary polynomials, modulo xn — 1. 

THEOREM IV. The multiplication of cyclic matrices is commutative. 

Thus cyclic matrices form a commutative subalgebra of order n 
in the non-commutative algebra of order n2 formed by general n-
rowed square matrices. 

The following alternative form of proof of these theoiems, directly 
in terms of the explicit representation (6) of a cyclic matrix, may be 
of interest. Let am, (m = 0, 1, • • • , « —1), denote any n complex num­
bers. Then a cyclic matrix of order n, ||a»,j|, is one where a»-,-= «/_»•, 
the index j — i being taken modulo n\ that is, in case j — i is negative, 
j—i+n is to be used instead. If l|èt-,-|| is another cyclic matrix: 
bij=f3j-i,j--i taken modulo n, then |]at-,j| X||&*;j| = |lc*v||> where 

n n 
ca = A ! aikbkj = ]C <xk-ifi]'-k = z2 asPt 

(in the last summation s} t evidently take once and only once every 
combination of values such that s+t^j—i, modulo n). In other 
words, defining 

(8) 7m = X) ««&> s + t ^ m (mod n), 

we have c^ = Y,_i, j — i taken modulo n. 
This proves Theorem II . Theorem III follows because (8) repre-
10 This is only of degree r •—1 if L is r-ary (see (9)). In our cited paper we defined 

the auxiliary polynomial as a 0 ^ r - 1 + « i ^ r ~ 2 + • • • +ctr~i. With this difference of nota­
tion in mind, no ambiguity should arise in comparing the two papers. 
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sents the law of multiplication of the auxiliary polynomials modulo 
xn-l: 

n— 1 n— 1 n—1 

S 7m#m = ]C «a**- Z) i8**' (m0d (*" - !))• 
m = 0 s = 0 *=0 

Theorem IV expresses the symmetry of (8) in the indices s, t of a, /?. 
As has been pointed out, all these theorems can be stated in terms 

of L.P.T.'s11 instead of cyclic matrices. The auxiliary polynomial of 
an r-ary L.P.T. is of degree r — 1 : 

(9) 4>{x) = ao + ct\X + • • • + ar-\X
r~l. 

We term <j>(x) = 0 the auxiliary equation of the L.P.T. 
By factorization of its auxiliary polynomial, or solution of its aux­

iliary equation, every r-ary L.P.T, can be factored into r — 1 binary 
L.P.T.'s. This results from Theorem I I I ; in fact, if 

, 4 / V V , , v f CD . CD w (2) . (2) ( r - l ) < r - l ) 

(10) <t>{x) = («o + « i X)(<XQ + OH X) - - • (<XQ + <x\ x), 

then L is equal to the product of the r — 1 binary L.P.T.'s 
TU) (?')_ O')^ 
L2 = ao I + «i C , j = 1, 2, • • • , r — 1. 

The binary components L<p are evidently not unique; rather, as is 
evident, each is subject to multiplication by a (complex) scalar X(;'; 

provided that the product of all the X(?),s is unity. 
If L is an S .C, M", so that (3) is verified, we have 0(1) = 1, or by 

(10), 

(11) 1 = («o + on )(«o + «i ) • • • («o + «i )• 

Dividing (10) by (11), we obtain 

*(*) = ( ^ + etpxw? + ^x) • • • vt" + pï^x) 
where ^ = ^ ) / ( « o ' ) + « ? ) ) , PP^oP/iptf+a?) ; hence 

(12) ^ ) + ^ ' ) = l . 

Accordingly MP=$*I+(i$C is a binary S.C. for j = l, 2, • • • , r-1, 
and we have the following theorem. 

11 The commutativity of L.P.T.'s seems the more noteworthy because it is cer­
tainly not evident geometrically that two binary S.C.'s are commutative. See the 
geometric interpretation of a binary S.C. at the end of §1. 
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THEOREM V. Every r-ary S.C., Mr, is representable uniquely as the 
product of r-l binary S.C.'s: Mr=Jl)Z\M^. 

The uniqueness is a consequence of the fact that the components 
Mij) are not subject to multiplication by a scalar, because that would 
disturb condition (12). 

An interesting illustration of Theorem V is furnished by the ter­
nary centroidal construction 

Zk = \%k + iZjH-l + lZk+2-

Here the auxiliary polynomial factors as follows: 

1 co — x co2 — x 
— (1 + x + x2) = f 
3 co - 1 co2 - 1 

where œ = e2iri/z is a complex cube root of unity. By the remarks as­
sociated with (4), the component binary S.C.'s are those which em­
ploy triangles similar respectively to (1, oo, 0), (1, o>2, 0). Hence the 
centroid of any three points zi, £2, z% will be arrived at as follows. 
On Z1Z2, Z2Z3 construct 120° isosceles triangles to the left; let z{, z{ be 
their respective vertices. On z{zl construct a 120° isosceles triangle 
to the right; its vertex z{' is the centroid of z\, z2l z%. 

We conclude this section by observing the following factorization 
of a cyclic determinant: 

(13) d e t i = <Kl)-<Kco).<Kco2) ^fa*""1), 

where o) = e2xifn is a primitive wth root of unity. The proof is easily 
given as follows. Det L is a homogeneous polynomial of degree n in 
the as. By addition of all the columns of L (refer to (6)), 0(1) is seen 
to be a factor of det L. By using 1, co, co2, • • • , co*1-1 as multipliers 
of the successive columns and adding, <£(co) is seen to be a factor of 
det L. Similarly <£(co2), • • • , 0(cow-1) are factors. Each of these n fac­
tors is a linear polynomial in the a's. Hence (13) holds to within a 
numerical factor, which is verified to be 1 by comparison of the terms 
i n an

0. 

3. Geometrical applications. In our cited paper, we consider the 
relations 

(14) Rp^it ^k~l)pzk = 0, p = 1, 2, • • • , * - 1, 

as applied to any polygon. Each relation Rp = 0 expresses an intrinsic 
geometric property of the polygon, being invariant under any simili-
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tude transformation, z£ = Azk-\-B; this is easily verified if account is 
taken of the well known equation12 ^ l o w ; b p = 0, (̂> = 1, 2, • • -,n — l). 

A polygon is called regular of œq-type13 if it is similar to the polygon 
(1, œq, œ2q, • • • , o)(n~1)q). A regular polygon of co-type is simply a 
(convex) regular polygon in the ordinary sense. A regular polygon of 
coMype may be star-shaped (for example, n = 5, q = 2: a star-shaped 
regular pentagon), or it may resolve into an s-gon described / times, 
where st = n (for example, w = 6, q — 2: an equilateral triangle de­
scribed twice, considered as a form of regular hexagon). 

I t was shown (loc. cit., §5) that the criterion f or a polygon to be 
regular of œq-type is that it obey the following n — 2 conditions: 

(15) RP = 0 for p = 1, 2, • • • , n — 1, except n — q. 

Each condition Rp = 0 may therefore be regarded as expressing a "de­
gree of regularity," and any number k<n — 2 of these conditions 
as expressing "partial regularity" of degree k. 

By multiplying equation (2) by co(&~1)2> and summing for & = 1, 
2, • • • , n, we find 

(16) RP' = <t>(o)-p)Rp =* <t>(ù>n~p)Rp, 

or, interchanging p and n — py 

(16') Rn-p = 0(û>*)lîn-p. 

We infer from (16) or (16') the following two facts: 
(i) If a polygon obeys the relation Rp = 0, this relation persists after 

any L.P.T. (That is, Rp is a relative invariant of the group Gn of all 
L.P.T.'s.) 

(ii) If cop is a root of the auxiliary equation <p(x) = 0 of an L.P.T., 
then this L.P.T. converts every polygon P into a polygon P' obeying the 
relation i ? n _ p ~ 0 . 

A binary S.C., M"2 = aoi r+«iC, (ce0+cei= 1), has the auxiliary linear 
polynomial (j>(x)=ao+aiX, and hence obeys the hypothesis of (ii): 
0(cop) = 0 , when and only when — ai:ao=l:œp. By the statement fol­
lowing (4'), this means that the triangle (s/t, Zk+i9 zi) is similar to 
(1, o)p, 0). Then z{ is at the vertex of an isosceles triangle with vertex 
angle 2pir/n based on ZkZk+i and to the left14 of this base. We shall 
denote this construction whereby the polygon (zk) is derived from 
the polygon (zk) by A(2pT/n). 

12a)P is a root, not 1, of xn-l = (x-l)(l-\-x+xi+ • • • +xn~1)^0. 
18 As defined, loc. cit., §2, Definition (iii). 
14 With this interpretation: an isosceles triangle to the left with vertex anglex4- 0 

is an isosceles triangle to the right with vertex angle TT — 6. 
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We may now put (i), (ii), and the criterion (15) together so as to 
give the next theorem : 

THEOREM VI. If, on an arbitrary polygon P 0 , then —2 constructions 
A(2pw/n) for p = l, 2, - - - , n — 1 except q, are performed successively 
in any order, giving the series of polygons Pi , P2 , • • • , Pn-2, then Pn-2 
is regular of a)q-type. Further, Pn-2 is independent of the order of these 
constructions. Also, the centroid of Pn-2 and of all the intermediate poly-
gons Pi , P2 , • • • is the same as that of Po.15 

(The last statement refers to the remark associated with (3a).) 
PROOF. Each operation A(2p7r/n) confers the property Rn-P = 0 on 

the new polygon, according to (ii) ; and the subsequent operations al­
low the polygon to keep this property, according to (i) ; therefore the 
final polygon P n_ 2 has all the properties (15) requisite for regularity 
of co3-type. 

The case n = 3 of Theorem VI is the following well known theorem 
of elementary geometry: If on each side of an arbitrary triangle as 
base, a 120° isosceles triangle is constructed, always outward or al­
ways inward, then the vertices of these isosceles triangles form an 
equilateral triangle. 

In conclusion, we consider the effect on a polygon of any r-ary 
S.C., M. Since for an S.C., 0(1) = 1 by (3), the determinant of M is 
by (13) 

det M = 0(co)-<Kco2) <t>(o>n~l). 

Hence, if the auxiliary polynomial <j>(x) is prime to xn — 1, then 
det M7*0, and the transformation M is (uniquely) reversible. This 
means that for every polygon P ' there is a (unique) polygon P such 
that P' = MP; accordingly, P' can have no special properties if P is 
general. 

On the other hand, if the greatest common divisor of <j>(x) and 
xn — 1 is 

\p(x) = (x — o)pl)(x — o)P2) • • • ( # — œpk), 

so that 

0(ww) = 0, 0(co*2) = 0, • • • , 0(o>") = 0, 

4>(o)p) 7e 0 for p 9e pi or p2 • • • or pk, 

then by (16') the transformed polygon P ' has the special properties 
(partial regularity of degree k) 

Theorem VI is the main one of our cited paper (Theorem A or A', §7). 
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(18) Rn-Vx — 0 , Rn-p2 — 0, * ' ' , Rn-pk — 0 

for an arbitrary original polygon P . Further, no other relations 
Pn_p = 0 (p7*pi or p2 - - • or £jfc) are satisfied by P ' if P remains gen­
eral ( P ' has no higher than the &th degree of regularity). This is also 
seen from (16'), where 0(cop) ^ 0 , Rn-P^0 (since P is general) ; there­
fore P ' n _ ^ 0 . 

In fact, no relations of any kind besides (18) are satisfied by 
P' = MP if P remains general. This is because, by the general theory 
of systems of linear equations, it can be readily shown that if the 
conditions (17) are satisfied by the coefficients a in (2), then the con­
ditions (18) are sufficient as well as necessary in order that (2) be 
solvable for the JS'S in terms of the z"s. This is to say that for any 
polygon P' obeying (18) a polygon P can be found such that P ' = MP; 
indeed, the class of such polygons P depends linearly on k complex 
parameters. 

BROOKLYN, N. Y. 

AXIOMS FOR MOORE SPACES AND METRIC SPACES1 

C. W. VICKERY 

We shall consider a set of five axioms in terms of the undefined 
notions of point and region. I t will be shown that these axioms are 
independent and that they constitute a set of conditions necessary 
and sufficient for a space to be a complete metric space. It will also be 
shown that certain subsets of this set of axioms constitute necessary 
and sufficient conditions for a space to be (1) a metric space, (2) a 
Moore space, (3) a complete Moore space. Axiom 2 and a more gen­
eral form of Axiom 1 have been stated by the author in an earlier 
paper [l ]. Following terminology of F. B. Jones [2], a space is said to 
be a Moore space provided conditions (1), (2), and (3) of Axiom 1 
(that is, Axiom 10) of R. L. Moore's Foundations of Point Set Theory 
[3 ] are satisfied. A space is said to be a complete Moore space provided 
it satisfies all the conditions of that axiom. Wherever the notion of re­
gion is employed, whether as a defined or an undefined notion, it is 
understood that a necessary and sufficient condition that a point P 
be a limit point of a point set M is that every region containing P con­
tain a point of M distinct from P . The letter S is used to denote the 
set of all points. 

1 Presented to the Society, April 20, 1935, under the title Sets of independent axioms 
for complete Moore space and complete metric space. 


