
A THEOREM ON THE ROTATION GROUP OF 
THE TWO-SPHERE1 

DEANE MONTGOMERY AND LEO ZIPPIN 

Let R be the group of all rotations of euclidean three-dimensional 
space E about its origin. We shall take the domain of operation of R 
to be a euclidean two-sphere 5 with center at the origin. On the space 
Sj R is transitive. The group R is topological and, considered as a 
space, is homeomorphic to projective three-space. 

While studying the action of groups in certain spaces, the following 
theorem, which, as far as We know, is not in the literature, occurred 
to us. 

THEOREM. Let G be any proper subgroup of R. Then G is not transi­
tive on S. 

The subgroup G is subject to no restrictions whatever; in particular 
it is not closed. The proof will be essentially topological and we begin 
by assuming that G is transitive on 5. 

The identity element e oî G must be a limit point of G. For other­
wise G would be finite and hence certainly not transitive on S. Let g 
be an element of G which is near e. The element g has a pair of fixed 
points on 5 one of which will be denoted by p. The element g is a 
rotation through a small angle A around the line through p and the 
origin. Under this rotation points near p move in a certain direction 
around p, say the clockwise direction. 

Now let x be any point of 5, and let h be any element of G such 
that h(p) =# . The element hgh~x is in G, and it is a rotation through 
the angle A around the line through x and the origin. Points near x 
will be moved in a clockwise direction around x. 

We have therefore shown that for every point x of the sphere, 
G contains a rotation through the angle A around the line through 
the origin and x. For each x, points near x are moved by the associ­
ated rotation in a specified sense around x. Let M be the totality of 
all these rotations the existence of which has just been demonstrated. 
The set M is homeomorphic to 5 and consequently is a two-sphere; 
furthermore M is a subset of G. 

Consider the elements of G given by g~lM. This set is a two-sphere 
passing through the identity element. There will be an arc L, which 
is in g~lM and therefore in G, leading from e to some element of G, 

1 Presented to the Society, October 28, 1939, under the title Note on rotation-group 
of the two-sphere. 
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call it g' distinct from e. Let U be an open three-cell subset of R 
which includes e. Let N be a two-sphere made up of elements of G. 
The existence of arbitrarily small two-spheres of this kind is proved 
as above by choosing the element g sufficiently near to e, and we may 
assume that N is in U. We may also assume that LN is in U and that 
g'N is outside N: as must be the case if N is small enough. 

The arc L may now be used to define a deformation of N to g'N. 
Under this deformation all points swept out by N are in G. Further­
more every point inside N is swept out by the deformation. Hence 
every point of R inside N is in the group G. The group G is thus seen 
to contain open subsets and, because of homogeneity, G is open in R. 
It must therefore coincide with R. The assumption that a proper sub­
group G was transitive on 5 has now led to a contradiction, and the 
proof is therefore complete. 

SMITH COLLEGE AND 

Q U E E N S COLLEGE 

ON ORDERED ALGEBRAS1 

A. A. ALBERT 

In his first Madison Colloquium lecture M. H. Stone connected the 
theory of convex bodies with linear sets over an ordered field. It was 
natural then to ask whether his theory could be extended by replacing 
these fields by ordered rings and indeed to ask whether there exist 
ordered rings which are not fields. I discussed this question at that 
time with S. MacLane and we attempted to answer it. MacLane has 
since found an example,2 in the literature, of a noncommutative 
ordered quasi-field. I t is not an algebra (of finite order) however and 
it is my purpose in this note to give a very brief proof in elementary 
language of the following decisive result. 

THEOREM. Every ordered algebra is afield. 

We first observe some known consequences of the order postulates.3 

The postulates on products imply that an ordered ring contains no 
divisors of zero and hence that every ordered algebra is a division 
algebra D. Then D has a unity quanti ty 1 = 1 2>0, the sums 

1 Presented to the Society, December 2, 1939. 
2 Cf. Reidemeister, Grundlagen der Geometrie, p. 40. It is also shown in this text 

tha t archimedian ordered quasi-fields are fields. 
3 The order postulates on page 40 of my Modern Higher Algebra were called postu­

lates for an ordered field but are valid for arbitrary rings. 


