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BARKLEY ROSSER 

1. Introduction. In this paper is proved the theorem : If p is an odd 
prime and 

(1) a* + b* + c*> = 0 

has a solution in integers prime to p, then £>41,000,000. 
It seems certain that still higher lower bounds for p can be deduced 

by the methods of this paper. However an argument is given which 
makes it seem unlikely that an indefinitely high lower bound can be 
so deduced. 

2. Preliminary results. Unless otherwise specified, we shall assume 
that p is an odd prime for which (1) can be satisfied by integers prime 
to p. Hence2 p>8,000,000. Also x^y shall denote x=y (mod p). Also 
any statement regarding factorization of a polynomial is to be under­
stood modulo p. 

Morishima has proved3 that for each odd prime m ^ 4 3 , there is a / 
(/=z£0, ^ 1) such that each of the values 

1 1 t - 1 t 
(2) t, — ; 1 - / , ; ; 

t \ - t t / - 1 
satisfies each of the following relations when substituted for x: 

(3) {O*" 1 - l)/p)(x™~1 - 1) s 0, 

(4) * ' ^ 1 , 

(5) * 6 ^ 1 . 

Morishima further proved that for each odd prime m ^ 3 1 , there is 
no t such that the values in (2) satisfy (4), (5), and 

(6) xm~l s 1. 

Hence for such m's, (rnp~l — l)/p = Q. Tha t is 

(7) m*-1 s 1 (mod p2). 

1 Presented to the Society, September 8, 1939. 
2 Barkley Rosser, On the first case of Fermais last theorem,, this Bulletin, vol. 45 

(1939), pp. 636-640. This paper will be referred to as I. 
3 Taro Morishima, Über den Fermatschen Quotiënten, Japanese Journal of Mathe­

matics, vol. 8 (1931), pp. 159-173. 
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In this paper we shall use the fact that p> 8,000,000 to prove that, 
for m = 37 or 41, there is no / such that the values in (2) satisfy (4), 
(5), and (6). Hence we can conclude that (7) holds for each prime 
m ^ 4 1 (since it is well known that (7) holds for m = 2). This fact is 
then used to prove that £>41,000,000. 

Until §6, we assume that m is an odd prime, n = (m —1)/2, and that 
a / exists such that the values of (2) satisfy (4), (5), and (6). 

We reduce the consideration of (4), (5), and (6) to a familiar the­
ory4 by replacing t by — a. Then since the polynomials in (4), (5), 
and (6) are all even functions, we see that each of 

1 1 1 + a - a 
Ü, — ; — 1 — G, j ; ; 

a — 1 — a —a 1 + a 
(8) 

1 1 1 + a a 
— a, ; 1 + a, ) ; ; 

— a 1 + a a 1 + a 
must satisfy (4), (5), and (6). Put 

- a6 - 3a5 + 5a* - 3a - 1 

~ a2(a + l )2 ' 
and define 

f(x) = (x-a)(x-l/a)(x+l+a)(x+l/(l + a))(x+(^^ 

Thenf(x)=x« + 3x5+bxi + (2b-5)x*+bx2+3x + l. 
We shall prove in §3 that f(x)f( — x) has no multiple factors if 

m^67. So for m^67, f{x)f(—x) must divide xm~l — 1. Also note that 
f(x)f( — %) has no factors in common with either x4 — 1 or x6 — 1, by 
(4) and (5). 

LEMMA 1. If<j>(x) is a polynomial in x andf(x)f(—x) has no multiple 
factors, then a n.a.sx. that f(x)f( — x) divide <j)(x) is that f(x) divide both 
0(x) andc/)(x + l). 

PROOF. By comparing the values in (8), one quickly sees that 
ƒ(— x) =ƒ(# — 1). So ƒ(— x) divides <j>(x) if and only if f(x — 1) divides 
4>(x)> if and only if f(x) divides <j>(x-\-l). 

LEMMA 2. If f(x)f(—x) has no multiple f actors and divides xm — l, 
then either 

A. f(x)f x2N — l, and (x+l)2N+l have a common factor, or 
B. flx)f(-x) divides x2N-l. 
4 In particular we shall use the results of L. E. Dickson, On the last theorem of 

Fermât, Messenger of Mathematics, vol. 38 (1908), pp. 14-32. 
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PROOF. Use Lemma 1 and the results of Dickson4 (loc. cit., §11, 
pp. 20-21). 

3. ƒ(#)ƒ( —x) has 110 multiple factors if m g 67. By (4) and (5) one 
can readily see that the only cases in which f(x)f( — x) can have a 
multiple root are: 

I. a 2 + a - l = 0 , 
II . a 2 - a - l = 0 , 

I I I . a 2 + 3 a + l = 0 . 
In case I, x2n — l and x2 —x — 1 have the factor x+a in common by 
(6). In case II , x2n~ 1 and x2 — x — 1 have the factor x — a in common 
by (6). In case III, x2n — l and x2 — x— 1 have the factor x+a + 1 
in common by (6). So it suffices to prove that x2n~ 1 and x2 —x — 1 
have no factors in common. 

LEMMA 3. Ifn^33, then x2n — l and x2 — x — 1 have no common factor 
modulo p. 

PROOF. Divide xn± 1 by x2 — x — 1. If #i, #2, • • • are the Fibonacci 
numbers, that is ai = a2 = l, #y+2 = â^+i+#/, and (?*(*) = ai#/+fl2#7~1 

+ • • • +ajX+a3-+iy then x w ± 1 = (x2— x — l)Qn-2(x)+anx+(an-i±l). 
The éliminant of x2 — x — 1 and an# + ( a n _ i± l ) is (aw_i)2+an-i#n 
— (a w ) 2 ±(2a n _i+a n ) + l. However (a/_i)2+aya/_i —(a,-)2 = ( —1)>. So 
the éliminant of xn±l and #2 —# — 1 is l + ( — l ) w ± ( 2 a n _ i + a n ) . How­
ever a, = ( ^ - / 0 / 5 1 / 2 , where fe = ( l + 5 ^ 2 ) / 2 , / = ( l~5 1 / 2 ) / 2 . So a, 
equals the integer nearest to k]'/51/2. Hence xn±l and x2 — x — l have 
no common factor if n^33, since p>8,000,000 and factorization is 
modulo p. Therefore x2n — l and x2 — x — 1 have no common factor if 
n ^ 3 3 . 

4. Proof that m =^37. Assume m = 37, and then use Lemma 2 with 
iV = 9. 

Case 1. x — a is a common factor of ƒ(#), #18 — 1, and (x + l ) 1 8 + l . 
By (5), x — a is not a factor of #6 — 1. So x — a is a common factor of 
(x«+xz + l)(x«-xz + l) and ( x + l ) 1 8 + l . 

Subcase I. x—a is a common factor of x 6 + x 3 + l and (x + l ) 1 8 + l. 
So a9 = l and ( a 2 + 2 a + l ) 9 /a 9 + l = 0 . Put jö=a + l / a . Then A=fiz 

- 3 / 3 + 1 - 0 , and, s ince/?+2 = (a + l ) 2 / a , 

{fi + 2)9 + 1 = ((0 + 2)3 + 1)(08 + 2)6 - (0 + 2)3 + 1) s 0. 

If (/3+2)3 + l = 0 , then 6/32 + 15/3+8 = 0, 23/?+52 = 0, and6 2S16 = 22 

17-37 = 0. So 
6 Here, and at corresponding places later, a contradiction results from the fact 

that p> 8,000,000. 
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08 + 2)6 - (/3 + 2)3 + 1 = 0, B = 417/32 + 699^ - 137 = 0, 

J3/3 - 417,4 = C = 699/32 + 1096/3 - 411 s 0, 

3B -C = 534/Ö2 + 1001)3 = 0. 

However /3 = 0 would contradict ^4=0. So 534/3 + 1001=0. So 
883,227 = 3-37-73109 = 0. 

Subcase II . x — a is a common factor of x6 —x3 + l and ( x + l ) 1 8 + l . 
S o a 9 = - l and ( a 2 + 2 a + l)9 /a9 = l. Put /3 = a + l / a . Then 

/33 - 3/3 - 1 = 0, 

tf+2)»-ls ((/3 + 2)3 - l)((/3 + 2)6 + (0 + 2)* + 1) = 0. 

If ( / 3 + 2 ) 3 - l = 0 , then 6/32 +15/3+8 = 0, 23/3+28 = 0, and 724 = 22 

•181=0. So 

05 + 2)6 + 03 + 2)3 + 1 = 0, 447|82 + 861/3 + 271 = 0, 

37(1870 + 302) = 0. 

Using 187/3+302 = 0 , we get 1,620,673 = 73 • 1492 = 0. 
Case 2. / (x)/( — x) divides x18 — 1 . Because of (5), / (x) / ( —x) divides 

x 1 2 +x 6 + l. So / (x ) / (~ -x )=x 1 2 +x 6 + l. Comparing the coefficients of 
x10 and x8, we get 2 0 - 9 = 0 and ô 2 - 1 0 ô + 3 0 = 0. So 21=0 . 

5. Proof that w ^ 4 1 . Assume m = 41. Use Lemma 2 with N= 10. 
Case 1. / (x) , x20 — 1 , and ( x + l ) 2 0 + l have a common factor. The 

discussion in Dickson (loc. cit., pp. 23-24) will eliminate this case. 
Case 2. f(x)f( — x) is a factor of x20 — 1. By Lemma 2 with iV=5, 

either ƒ(x), x10 —1 and ( x + l ) 1 0 + l have a common factor, or else 
/ (x) / ( - -x) divides x10 — 1 . The latter is impossible, so let x —a be a 
common factor of/(x), x10 — 1, and (x + 1) 10 + 1. Because of (4), x — a 
is not a factor of x2 — 1. 

Subcase I. x — a is a common factor of x 4 + x 3 + x 2 + x + l and 
(x + l ) 1 0 + l. Thence5 = l. So ( a 2 + 2 a + l ) 5 / o : 5 + l = 0 . Put/3 = a + l/a. 
T h e n / 3 2 = - / 3 + l , (/3+2)5 + l = 0 . So 5(11/3+16) = 0 . So 4 1 = 0 . 

Subcase II . x —a is a common factor of x4 —x 3 +x 2 —x+1 and 
(x + l ) 1 0 + l. Then a 5 = - l . So put /3 = a+ l / cx . Then /32=/3+l, 
( / 3 + 2 ) 5 - l = 0 . So 275/3+174 = 0. So 2501=41-61=0 . 

6. Proof that p>41,000,000. We have now proved 

37*-1 = 1 (mod £2), 41*- 1 = 1 (mod p2). 

So we can argue as in I and conclude that £>41,000,000. 

7. The non-generality of this method. I t seems certain that the 
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lower bound just obtained is not the best that this method will pro­
duce. For instance, now that we know that p> 41,000,000, it is al­
most certain that we can prove that (7) holds for m = 43 (in fact, this 
probably follows from p > 8,000,000). Also, the fact that p > 41, 000,000 
will probably make it easier to prove that, for appropriate m >43 , the 
values of (2) must satisfy (3), (4), and (5), and so, for these w's also, 
(7) undoubtedly holds. Nevertheless the methods of this paper will 
apparently fail for very large values of p. 

To see the difficulty that would arise, let us ignore any difficulties 
inherent in the proof that the values of (2) must satisfy (3), (4), and 
(5), and assume that for any mt this result would be easily forthcom­
ing. Then, for any m, (7) would hold except for these pys which are 
factors of the éliminant of xm~l — 1 and (x + l)m~l -1. Asp >41,000,000, 
we could then prove that (7) holds for all m^Ni (undoubtedly 
iVi>43). From this, by the method of I, we could prove that p>M\. 
From this we could then prove that (7) holds for all m ^ iV2, and so on. 
Unfortunately the M's and N's would probably not increase indefi­
nitely. 

To see this, let us first consider the éliminant of xm~l — 1 and 
(x + l ) M - 1 — 1 . Let x — a be a common factor. Then am~l^\ and 
(a + l)m~"1 = l. We break this into cases (essentially corresponding to 
a factorization of the éliminant (see Dickson,6 p. 28), by considering 
the éliminants of (x + l)u — xv and xm~l — 1 for small values of u and v. 
The case w = l, v = 2 was treated in Lemma 3, and two éliminants of 
the order km/2 were obtained. If m is the rth prime, m is of the order 
of r log r (see Landau,7 pp. 213-215). So the éliminants are of the 
order of rbr. 

Now we consider the lower bounds for p which can be obtained by 
the method of I. Let the S's be as in Lemma 5 of I and let r be large. 
Then 2i = 0(/>r) - l o g 2 <2r log r (Landau, loc. cit., p. 195). So 
S , -< (S i )Vi !<(2 r log r )Vi ! . Also, since r is large, r !(log 2)2 r_1 

> (errrr)er = rr. Substituting these in the formula for fr(x) in Lemma 5 
of I, we get 

fr(x) < (x + r log r)r/rr. 

If x>(2 log r)r, then/ r ( log x2/2) <x/2. So the method of I will not 
give a lower bound as great as (2 log r)r

y whereas the éliminant of 
xpr~i a n ( j x 2 _ _ ^ _ i [s 0f faç o r d e r of rbr. 

To the above argument, one might object that firstly it is not the 
6 L. E. Dickson, On the last theorem of Fermât, Quarterly Journal of Mathematics, 

vol. 40 (1908), pp. 27-45. 
7 E. Landau, Handbuch der Lehre von der Verteilung der Primzahlen. 
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size of the éliminants but the size of their largest prime factor which 
is important, and secondly it is not essential to take the w's in order 
of magnitude. In answer, it should be pointed out that after one 
passes the limits of factor tables, it becomes impracticable to deal 
with the factors of the éliminant rather than the éliminant. There­
fore, since the éliminant (in one case at least) appears to be an in­
creasing function of m, one is compelled to work with monotone 
increasing m. 

CORNELL UNIVERSITY 

SOME UNIFORMLY CONVEX SPACES 

R. P . BOAS, JR. 1 

1. Introduction. A Banach space is said to be uniformly convex if 
to every e, 0 < e < 1, there is a 5(e), 0 < 5(e) < 2 , such that \\x\\ = ||y|| = 1 
and H^—yll^e imply ||x+3>|| < 2 —ô(e). J. A. Clarkson, who intro­
duced the concept of uniform convexity [5], proved that the spaces 
Lp and lv are uniformly convex if p > 1, basing his proof on the follow­
ing inequalities2 among norms of elements of Lp or lp: 

(1.1) ||* + y\\*> + \\x - y\p S 2p~K\\x\\p + \\y\\p), ^ 2 ; 

(1.2) IJ* + y\\p + ||* - y\\p è 2(||*||^ + \\y\\p')^, ^ 2 ; 

(i.3) ||* + y||p' + Ik - y\\p' £ 2(\\4P + l|y||p)p'-1, i < p ^ 2. 

The uniform convexity of Lp and lp follows by inspection from either 
(1.1) or (1.2) if p^2, and from (1.3) if Kp£2. As Clarkson ob­
served, (1.1) is a consequence of (1.2), since {(l/2)(ar+br)}1/r is an 
increasing function of r for positive a and b [6, p. 26], so that the 
right side of (1.1) is not less than that of (1.2). However, (1.1) is 
interesting because it is considerably simpler to prove than (1.2) (see 
§3), so that the uniform convexity of Lp and lp can be established 
more easily for p ^ 2 than for 1 < p < 2. 

In this note I give a short proof of Clarkson's inequalities (and of a 
general set of inequalities, which includes them), using M. Riesz's 
convexity theorem for linear forms. This proof has the advantage 
that it can be generalized to show that the spaces Lp{Lq}, Lp{lq}, 
lp{Lq},lp{lq} are all uniformly convex3 if p>l,q>l. Here ! > { £ } is 

1 National Research Fellow. 
2 Here, as throughout this note, p' = p/(p — 1) ; similarly for other letters. 
8 These results suggest the possibility tha t L*{E} and IP{E} are uniformly con­

vex whenever E is; but I can offer no evidence for or against this conjecture. 


