A DECOMPOSITION OF ADDITIVE SET FUNCTIONS!
R. S. PHILLIPS

This paper is concerned with a decomposition theorem for additive
functions on an additive family of sets to either real numbers or a
Banach space. Additive bounded set functions have as yet been little
studied. However the recent paper of Hildebrandt? illustrates their
importance.

We shall use the following notation:

(a) T':an abstract class of arbitrary elements &.

(b) 3:a completely additive family of subsets 7 of T'; thatis, T e 3,
7 ¢ 3 implies T—7 ¢3,and 7, e Sfor n=1, 2, - - - implies D 7, € 3.

(c) a:a set function on 3 to real numbers.

(d) A: the subclass of set functions on 3 to real numbers which
are additive and bounded; that is, 71, 72 €3 and 7;-7e=0 implies
a(r1+72) =a(r) +alrs).

(e) C: the subclass of set functions on 3 to real numbers which are
completely additive (c.a.), thatis, 7, e Jforn=1,2, - - - and 7;-7;=0
if 1547 implies a(D_7,) =2 a(r,). The functions in C are bounded.?

The notations Ap and Cp refer to the subclasses of 4 and C respec-
tively whose elements are nonnegative.

(f) x: a set function on 3 to a Banach space* X. The definitions
of additive and c.a. set functions are formally retained. If {r,} is a
sequence of disjoint sets of 3 and x(7) is c.a., then D_x(r,) is uncon-
ditionally convergent.®

(g) Cx: the class of c.a. set functions on 3 to X.

In the statement of the following theorems, D will designate any

one of the classes 4, Ap, C, Cp, and T will denote the cardinal number
of 7.

THEOREM 1. Let N be an infinite cardinal number not greater than T.
For every a e D there exists an unique decomposition o =ou-+oz and a set
R(a) & 3 of cardinal number not greater than N such that a1, oz e D,

1 Presented to the Society April 15, 1939, under the title On additive set functions.

2 T. H. Hildebrandt, On bounded linear functional operations, Transactions of this
Society, vol. 36 (1934), pp. 868-875.

3 S. Saks, Theory of the Integral, Monografje Matematyczne, Warsaw, 1937, p. 10,
Theorem 6.1.

4 S. Banach, Théorie des Opérations Linéaires, Monografje Matematyczne, War-
saw, 1932, chap. 5.

& If %, is a series of elements of X and if every subseries Y_#, is convergent, then
3" %ais said to be unconditionally convergent.
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ai(7) = a(R-7), a(t) =0 if 7T=N.

Let 2=E.[r ¢ 3, 7<N, a(r) #0]. We define a transfinite sequence
(r4, T2, * = * § Twy * =+, T - + - ) as follows: 7 is an arbitrary element
of 2. Suppose m\ have been defined for all A <u. If there exists 7 such
that 7Y acum=0 and 7 ¢ Z, then we set r =7,.

As a(r) is bounded, a(r) cannot differ from zero on a nondenumer-
able number of disjoint sets. The sequence therefore contains only a
denumerable set of elements.

Let R=> \r». Then R ¢ 5 and RN . We define ay(r) =a(R-7),
az(7) =a(r) —au(r) =a(r —R-7). The ai(r), ae(r) are clearly elements
of D. If 7= N, then by the definition of R, ae(7) =a(r—R-7) =0.

Although the set R is not unique, the function decomposition is
unique: Suppose there exist two different sets Ry, Re having the prop-
erties of the R defined above. The set identity R;-7+(Re—Ry) 7
=R2'T+(R1—'R2) -7 and a[(Rl—'Rz) 'T] =0 =0£[(R2—R1) : T] imply
that a(.Rl'T) =0£(R2' 7').

A set function « on 3 will be said to be nonsingular if for every
ted, a()=0. A set function o on J will be called N -homogeneous if
there exists a set Rsuchthat Re 3, R=8, a(r) =a(R-7), and a(r) =0
if7<N.

Without loss of generality we may consider only nonsingular set
functions because for every a e D there exists a unique decomposi-
tion a=ay+az and a denumerable set {t;} of elements of T, such
that o, as & D, au(7) =Z;°.,1a(1-~t,~), and oz is nonsingular. We omit
the proof.

THEOREM 2. For every nonsingular o e D, there exists an unique de-
composition o= i, the sum being absolutely convergent, and such
that a; is Ni-homogeneous and N;#=N; if 157,

In the proof of this theorem an induction is made on the infi-
nite cardinals not exceeding that of T, well-ordered according to
magnitude. We define a transfinite sequence of set functions
(a1, gy 3 Qty* » +y @, - - - ) as follows: Suppose o have been defined
for all A<p and (1) only a denumerable number of the o) are not
identically zero; (2) Z%_S_MI ax(r)| < «;and (3) o €D and is N\-homo-
geneous. By Theorem 1 there exist R, ¢ 3 and a decomposition
a=al+ao? such that R,<N,, ai(r) =a(R, 1), &&(r) =0 if 7<N,, and
ay, o2 ¢ D. Clearly on(r) =a(R,-Ry-7) if N<p.

Let a,(r) =ak(r) —>_r<uarn(r). We consider the following cases:

I.aeC, Cp. Let R R Z R)‘ where T = E)\[)\<M, 0()\#0] The
sets R, are disjoint. Suppose ax(r) a(Ry-7) for A\<p. Then by (1)
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a(r) = a(R, 1) — Z ar(r) = a(R, 1) — Z a(R,,'R)gT)

T T

= a[(Rn - ZRu'ﬁx> '7'] = a(R, 7).
L

It is clear that (1), (2), and (3) are satisfied for u+1. ax520 implies

that a(r) #0 for some subset of R). As the R, are disjoint, the se-

quence will contain only a denumerable number of functions not iden-

tically zero.

II. @« ¢ Ap. For \y<p, a(T)gaio(T) EZ)‘§)‘00£)\(T) gZxé)‘oa)\(T).
Clearly (1) and (2) are satisfied for u+1, and the sequence contains
only a denumerable number of functions not identically zero. Let \;
be a spanning sequence for Ex[\ <u, on540]. Then

(7)) = ap(r) — 3 on(r) = a(Ru ) — lim an,(r)
A<p Lt

= a(R, 1) — }im a(R, Ry, 7).

Hence (3) is likewise satisfied.

III. e 4. Every o ¢ A has a decomposition a=o;—a;y where
o, oz &€ Ap. An application of IT to oy and oy gives the desired decom-
position.

The decomposition is unique: Any two sequences of homogeneous
functions differ in a first function, o, But this is contrary to

L= <0 being unique.

In these theorems the restriction that the additive bounded set
function be defined over an additive family 3 is optional, since the
range of definition of such a function can always be extended to an
additive family. The type of argument used by Pettis® will prove
this statement.

We next consider the possibility of extending these theorems to
functions x(7) on J to a Banach space. The theorem is not in general
valid for additive bounded set functions of this type. This is illus-
trated by x(7) defined on all subsets of T'=(0, 1) to the space X of
bounded functions on S=(0, 1) where x(r) is the characteristic func-
tion of the subset of .S which has the same coordinate values as 7.
Clearly there exists no denumerable set R such that x(r —Rr) =0 for
all denumerable sets 7.

However analogous theorems are obtained for c.a. set functions
on J to X.

¢ B. J. Pettis, Linear functionals and completely additive set functions, Duke Mathe-
matical Journal, vol. 4 (1938), p. 554, Theorem 1.1,
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THEOREM 3. Let N be an infinite cardinal number not greater than T.
For every x € Cx there exists a unique decomposition x =x,-+x, and a set
R(x) € 3 of cardinal power not greater than N such that x;, %s ¢ Cx,
x1(r) =2(R-7), x2(1) =04 T=N..

x(7) #0 on at most a denumerable number of disjoint sets of 3. Sup-
pose the contrary. Then there exists a denumerable sequence of dis-
joint sets {r,} and an >0 such that ||x(r))||>e, (=1, 2, - ). As
x(r) is c.a., D_x(r;) converges. The supposition is therefore false.

The argument used in Theorem 1 will now prove the theorem.

THEOREM 4. For every nonsingular x e Cx, there exists an unique de-
composition x=p ix;, the sum being unconditionally convergent, and
such that x; is Ni-homogeneous and N; #=N; if 17%].

The proof iiidentical with that of I in Theorem 2. Again there will
exist disjoint R,’s such that x,(r) =x(R,-7).
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