INDEFINITELY DIFFERENTIABLE FUNCTIONS WITH PRESCRIBED LEAST UPPER BOUNDS¹

IRWIN E. PERLIN

1. Introduction. Let F(x) be a real indefinitely differentiable function of the real variable x defined on the interval $a \leq x \leq b$, and let M_n denote the least upper bound of $|F^{(n)}(x)|$ on that interval.² In this paper we shall establish sufficient conditions that there exist an indefinitely differentiable function F(x) taking on certain prescribed M_n .

It is easy to see that M_0 and M_1 can be assigned arbitrarily. However, the first three upper bounds M_0 , M_1 , and M_2 must satisfy certain inequalities.³ Let us consider the interval (0, 1). Let t_1 be the value of x for which $|F^{(1)}(x)|$ attains its maximum. Then

$$F(1) - F(t_1) = (1 - t_1)F^{(1)}(t_1) + (1/2!)F^{(2)}(\theta_1)(1 - t_1)^2,$$

where $t_1 < \theta_1 < 1$. And similarly

$$F(0) - F(t_1) = -t_1 F^{(1)}(t_1) + (1/2!) F^{(2)}(\theta_2) t_1^2,$$

where $0 < \theta_2 < t_1$. On subtracting these equations we obtain

$$F^{(1)}(t_1) = F(1) - F(0) + (1/2!) \left\{ F^{(2)}(\theta_2) t_1^2 - F^{(2)}(\theta_1) (1 - t_1)^2 \right\},$$

$$M_1 \le 2M_0 + M_2/2!.$$

By the same procedure we can obtain for the interval (0, a)

(1)
$$M_1 \leq 2M_0/a + M_2a/2!.$$

In the case of the interval $(0, \infty)$ we can replace (1) by a more precise inequality. Since *a* is arbitrary, we can replace *a* by the positive value which minimizes the right side of (1), and obtain

$$M_1 \leq 2(M_0 M_2)^{1/2}.$$

Ore⁴ in a recent paper employed the results of W. Markoff to obtain certain inequalities connecting the least upper bounds of $|F^{(i)}(x)|$, $(1 \le i \le n)$, with those of |F(x)| and $|F^{(n+1)}(x)|$ where F(x) is a function with bounded (n+1)th derivative. For the first derivative the inequality (1) is slightly better than that obtained by Ore.

¹ Presented to the Society, September 8, 1939.

² By $F^{(0)}(x)$ we shall mean F(x).

⁸ Hadamard, Comptes Rendus des Séances de la Société Mathématique de France, 1914, pp. 68–72; T. Carlman, *Les fonctions quasi analytiques*, Paris, 1926.

⁴ O. Ore, On functions with bounded derivatives, Transactions of this Society, vol. 43 (1938), pp. 321–326.

2. Construction of an indefinitely differentiable function with prescribed least upper bounds. We now prove the following theorem.

THEOREM. If the sequence $\{M_i a^i\}$ is monotone decreasing, then there exists an indefinitely differentiable function F(x) defined on $(0 \le x \le a)$ such that M_i is the least upper bound of $|F^{(i)}(x)|$ on $(0 \le x \le a)$.

Define

$$0 \leq S_i = \sum_{j=0}^{\infty} (-1)^j \frac{M_{i+j}a^j}{j!} \leq M_i, \qquad F(x) = \sum_{i=0}^{\infty} S_i \frac{x^i}{i!} \cdot$$

Now the function F(x) so defined is an entire function. Let x = b. Then

$$F(b) = \sum_{i=0}^{\infty} S_i \frac{b^i}{i!} = \sum_{i=0}^{\infty} (-1)^i \frac{M_i}{i!} \left(\sum_{j=0}^{i} (-1)^j C_{i-j,j} a^{i-j} b^j \right),$$

= $\sum_{i=0}^{\infty} (-1)^i \frac{M_i (a-b)^i}{i!} \cdot$

And since the series

$$\sum_{i=0}^{\infty} \frac{M_i a^i \left| (1-b/a)^i \right|}{i!} < M_0 \sum_{i=0}^{\infty} \frac{\left| (1-b/a)^i \right|}{i!}$$

converges, the series $\sum_{i=0}^{\infty} (S_i/i!) b^i$ converges.⁵ Further,

$$F^{(i)}(a) = \sum_{j=0}^{\infty} (-1)^{j} M_{i+j} a^{j} \left(\sum_{k=0}^{j} \frac{(-1)^{k}}{k! (j-k)!} \right) = M_{i},$$

and

$$\left|F^{(i)}(x)\right| \leq F^{(i)}(a) = M_i, \qquad 0 \leq x \leq a.$$

Thus we have given explicitly a function F(x) satisfying the conditions of the theorem.

Armour Institute of Technology

⁵ See T. J. I'A. Bromwich, Theory of Infinite Series, London, 1931, p. 266.