
MINIMUM PROBLEMS IN THE FUNCTIONAL CALCULUS1 
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In the year 1922 Hahn2 published a proof of a multiplier rule for 
a problem more general than the well known problem of Bolza, and 
later, by quite different methods, Graves3 established analogues of 
the multiplier rule and of the Weierstrass condition for the problem 
of Lagrange with integro-differential side conditions. Using Graves' 
method and considering a somewhat more general problem, the au­
thor4 obtained analogues of the multiplier rule, the Clebsch condition, 
and the Jacobi condition. All these problems however are concerned 
with functionals defined over certain special function spaces. In 1934 
Lusternik5 attempted to formulate a multiplier rule for a general 
problem in a Banach space, but his proofs do not seem satisfactory. 
Two years later in a doctoral dissertation, written at the University 
of Kentucky, L. P. Hutchison6 established a Lagrange rule for such a 
problem under natural hypotheses on the functions involved, and the 
author7 proceeding in another direction generalized the statement 
and proof of the multiplier rule to abstract spaces. 

In the present paper two problems of the functional calculus are 
considered in detail: the first is concerned with minimizing a func­
tional defined on a region of a normed linear space; and the second 
restricts the so-called admissible points to satisfy an equation defined 
by a general operator. For the first of these problems it is shown that 
the theory of necessary and of sufficient conditions is quite like that 
for functions of several variables as well as for problems of the calcu­
lus of variations. In studying the second problem a multiplier rule is 
established under four different hypotheses, whose interrelations are 
studied, and the remaining necessary, as well as the sufficient condi­
tions, are obtained under three of these hypotheses. 

1. The simple problem. To describe the situation to be treated in 

1 Presented to the Society, April 15, 1939. 
2 Ueber die Lagrange'sche Multiplikatorenmethode, Sitzungsberichte der Akademie 

der Wissenschaften, Vienna, vol. 131 (1922), pp. 531-550. 
8 A transformation of the problem of Lagrange in the calculus of variations, Trans­

actions of this Society, vol. 35 (1933), pp. 675-682. 
4 The minima of functionals with associated side conditions, Duke Mathematical 

Journal, vol. 3 (1937), pp. 418-425. 
8 Sur les extrêmes relatifs des fonctionnelles (in Russian), Recueil Mathématique 

de la Société Mathématique de Moscou, vol. 41 (1934), pp. 390-401. 
6 On Implicit Function and Lagrange Multiplier Theorems, 1936. 
7 A multiplier rule in abstract spaces, this Bulletin, vol. 44 (1938), pp. 388-394. 
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this section we may consider a real-valued function ƒ which is defined 
on a region X0 of a normed linear space X, The problem of this section 
is then that of finding a point x in the region XQ which minimizes the 
function ƒ in the class of points in Xo. Throughout this paper it will 
often be convenient to refer to elements in X0 as admissible points 
and to suppose that ƒ is of class8 C". 

It is evident from the definitions of the first and second variations 
of a functional that if x is a minimizing point, then the equation 

öf(x, £) = 0 

must be an identity in £, and the lower bound of the second variation 
52/(#, £) on the unit sphere must be non-negative. This last condition 
is, of course, an immediate consequence of the fact that the second 
variation ô2f(x> £) must be non-negative. 

We may now ask whether it is possible by slightly strengthening 
the two necessary conditions stated above to obtain a sufficiency 
theorem. This question is answered affirmatively in the following 
theorem : 

THEOREM 1.1. If x0 is an admissible point at which the first varia­
tion ôf(x0j £) vanishes identically f or £ in the space X and at which the 
lower bound of the second variation o2f(x0, £) on the unit sphere is posi­
tive, then there is a neighborhood N of the point x0 such that f(x) >ƒ (#o) 
for every XT^XO in N. 

To prove the theorem we recall that the function ƒ is of class C" 
and hence that the second variation ô2f(x, £) is continuous in x uni­
formly on the unit sphere.9 Analytically this implies that for every 
positive e there is a neighborhood Ne of x0 such that for every £ on 
the unit sphere and x in Ne 

b2f(x, Ö > ô2/(*o, Ö ~ e = B - e, 

where B is the lower bound of ô2/(#o, £) for all points £ on the unit 
sphere. The number B however is by hypothesis positive, and hence 
it is clear that the second variation will be positive at every point x 
in the neighborhood NB* T O complete the proof it suffices to expand 
f(x) by means of Taylor's theorem which tells us that there is a posi­
tive number / less than unity such that 

f(x) — ƒ(#<>) = à2f[xo + t(x — #o), (x — #o)]/2, 
8 For the definitions and some properties of terms commonly used in the func­

tional calculus see, for example, L. M. Graves, Topics in the functional calculus, this 
Bulletin, vol. 41 (1935), pp. 641-662. 

9 See Graves, loc. cit., p. 651. 
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since the first variation vanishes identically. This equation, combined 
with the result reached immediately above, then yields the conclusion 
of the theorem. 

It is interesting to notice that in order to apply the results stated 
above to the calculus of variations the space X should be taken to be 
the set of derivatives y'{x) of admissible arcs y(x) and the norm of 
an element y'{x) to be [J^(y2(x)+yf2(x))dx]1/2. It can then be shown 
tha t if the strengthened form of the Legendre condition holds, our 
condition on the lower bound of the second variation is equivalent to 
the Jacobi condition, and a similar remark applies to the strengthened 
forms of these conditions. 

2. The more general problem. A problem more general than the 
one just discussed may be stated, in terms of a function g defined on 
the region X0 and having functional values in a Banach space F, as 
that of finding an admissible point x which minimizes ƒ in the class of 
admissible points satisfying the equation 

(2.1) g(x) = 0„. 

For the purposes of the analysis it will be supposed hereafter that 
the space X is complete and that the function g is of class C" on the 
region X0 . It will moreover be assumed that for each admissible x 
the contradomain, that is, the class of functional values, of hg(x, £) 
is closed. 

An admissible point x is said to satisfy the multiplier rule if there 
is a constant I and a linear, continuous, and real-valued function L 
defined on the space Y such that (/, L) 9^ (0, 0) and such that the 
equation 

»ƒ(*, 0 + L[6g(x, Ö] = 0 

is an identity in £; and the point x is regular in case the contradomain 
of the function ôg(x, £) is the entire space F. 

THEOREM 2.1. Every admissible point x that is not regular must sat­
isfy the multiplier rule with the constant I equal to zero» 

To prove this result we note that the contradomain of the varia­
tion 8g(x> £) is a proper closed subset of the space Y and hence, by a 
well known result concerning linear functionals,10 there is a linear and 
continuous functional L defined on the space Y and not identically 
zero, which vanishes at each point in the contradomain of 8g(x, £), 

10 See, for example, S. Banach, Théorie des Opérations Linéaires, Warsaw, 1932, 
p. 59. 
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that is, L[ôg(x, £ ) ] = 0 . This functional is, of course, effective in the 
theorem, and the result is thus proved. 

We may now proceed to examine in some detail the case in which x 
is a regular point. A preliminary result on this case is embodied in the 
following lemma: 

LEMMA 2.1. Let x be an admissible point which is regular. Then the 
first variation 5f(x, £) off at the point x vanishes f or every £ satisfying 
the equation 

(2.2) ôg(x,0 = 0 „ 

if and only if the point x satisfies the multiplier rule with the constant I 
equal to unity and with a unique functional L. 

To establish this result it is convenient to examine the operation 
adjoint11 to dg(x, £). This operation is defined to be the function 
G(L)=L[ôg(x, £)], where L varies over the class of linear, continu­
ous functionals on the space Y. Since the equation 

(2.3) Bg(x,S) =77 

has a solution £ for every 77 in F, a theorem on the relation of a func­
tion to its adjoint12 tells us that to every real-valued, linear, and con­
tinuous function k defined on the space X and vanishing at every 
point £ which satisfies the equation (2.2) there corresponds a unique 
L such that G(L) =k. But by hypothesis of is a functional having the 
same properties as &, and thus the lemma is proved, since the suffi­
ciency of the condition in the lemma is obvious. 

We now proceed to seek conditions under which the first variation 
àf(x> £) vanishes at the solutions of the equation (2.2). To do this it is 
convenient to consider the following hypotheses: 

(a) For every £ satisfying (2.2) there is a function x{b) of class C 
defined on an interval of the real axis containing the origin, having its 
functional values admissible solutions of the equation (2.1), and such 
that *(0)=tf, * 6 (0 )=£ . 

(b) If M is the class of all solutions of (2.2), there is a manifold N 
complementary to 1ZM. 

11 Ibid., p. 99 ff. 
12 Ibid., p. 148. 
13 It is obvious that M is linear and closed; and hence, by definition, N is a linear, 

closed subset of X such that X is the direct sum of M and N, that is, every £ is 
uniquely expressible as the sum of a ju in M and a v in N. See F. J. Murray, On 
complementary manifolds and projections in the spaces Lp and lP} Transactions of this 
Society, vol 41 (1937), pp. 138-152. 
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(c) There is a linear and closed subset N of the space X in one-to-
one correspondence with Y such that if 77 corresponds to v then 
ôg(x, v)=rj. 

(d) The space X is the composite of two Banach spaces M and N 
such that the partial differential ông(x, v) has an inverse14 at the 
point x. 

LEMMA 2.2. Let x be an admissible point satisfying the equation (2.1) 
and to which the hypothesis (a) is applicable. If then f is a minimum at x 
for the problem of this section, the first variation df(x, £) of f vanishes 
for every solution { of the equation (2.2). 

The proof of this lemma is obvious when one notices that the func­
tion ƒ [x(b) ] must have a minimum at b = 0. 

I t is now our purpose to investigate certain relations between the 
hypotheses stated above. These results are contained in the following 
lemma : 

LEMMA 2.3. If x is an admissible solution of the equation (2.1), then 
the hypothesis (c) is equivalent to the statement that x is a regular point 
at which hypothesis (b) is valid, and this statement implies that the hy­
pothesis (a) holds at x; in addition, hypothesis (d) implies (a). 

If hypothesis (c) holds at the point x} it is evident that x is regular. 
To prove that the linear closed set N of hypothesis (c) is effective 
in (b), consider an arbitrary point £ in X, let 77==Sg(#, £)> a n d l e t v 

be the point in N corresponding to 77. The point £ — v must then lie 
in the set M, and hence £=/*+*'• To show that this representation is 
unique it suffices to notice that since N is linear it contains the point 
0X and, by its definition, no other point in common with M. Con­
versely, it is clear that for every v in the manifold N of hypothesis (b) 
there is a unique 77 such that ôg(xy v) = 77. However since x is regular, 
there corresponds to every 77 in Y a point £ in X such that ôg(x, £) = 77. 
But £ is uniquely expressible as /*+*> and èg(x, ju) =0 y . I t is therefore 
evident that ôg(x, v)=r} and that v is unique. 

We may now show that hypothesis (c) implies (a) by considering 
a solution £ of the equation (2.2). Let the point x be represented as 
m0+n0 and consider the equation 

(2.4) g ( W o + n + J Q = 0, 

in which it is understood that n is in a neighborhood of the value n0 

and b is so near to zero that the point m0+n+b^ is admissible. This 

14 This is the assumption under which Hutchison established his multiplier rule. 
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equation has the initial value (b, n) = (0, n0) at which the differential 
with respect to n of g, 8g(x, v), has a continuous inverse. For, accord­
ing to the hypothesis (c), the linear continuous function hg(x, v) has 
a single-valued inverse which must be continuous since the spaces Y 
and N, a linear and closed subset of X, are complete.15 There is then 
a unique solution n{b) of (2.4) of class C' for b near zero and such 
that16 n(0) =n0. Differentiation of the equation (2.4) with n replaced 
by n{b) then shows that w&(0) = 0*, since m is in N, and hence that the 
function x(b) =mo+n(b)+b^ is effective in hypothesis (a). 

If hypothesis (d) holds, a proof very much like the one just given 
suffices to show that (a) also holds. 

Combining Lemmas 2.1, 2.2 and 2.3, we have the following multi­
plier rule: 

THEOREM 2.2. Let x be an admissible point which is regular and 
satisfies the equation (2.1). Then if hypothesis (a), (b), (c), or (d) holds 
at x and if the function ƒ is a minimum at x for the problem of this sec­
tion , the point x must satisfy the multiplier rule with the constant I = 1 
and with a unique functional L. 

To obtain a further necessary condition we consider a regular point 
x satisfying (2.1) and suppose that hypothesis (a) is applicable. If ƒ 
is a minimum at x for the problem being considered, then according 
to Theorem 2.2 there is a unique function 

(2.5) F(x) = f(x) + L[g(x)] 

whose first variation öF(x, £) vanishes identically, and a considera­
tion of F[x(b)]f where x(b) is described in hypothesis (a), serves to 
establish the following necessary condition : 

THEOREM 2.3. If the hypotheses of Theorem 2.2 hold at the point x, 
then the lower bound of the second variation 82F(xf £) of the function 
(2.5) in the class of points £ on the unit sphere satisfying the equation 
(2.2) is non-negative. 

3. Sufficient conditions. In order to establish conditions that are 
sufficient for a minimum it is desirable first to examine in more detail 
the hypotheses (c) and (d). For this purpose let x0 be an admissible 
solution of the equation (2.1), which in case (c) is representable as 
mo+n0 and in case (d) as (m0, n0). If we restrict m and n to lie near 

16 See Banach, op. cit., p. 41. 
16 This result follows from the Hildebrandt-Graves existence theorem for implicit 

functions; see Graves, loc. cit., pp. 653-661. 
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to m0 and n0, then hypothesis (d) and existence theorems concerning 
implicit theorems assure us that the equation 

(3.1) g(m9 n) = g[(tn, n)] = 0y 

has a unique solution n(m) of class C" such that no = n(m0). Conse­
quently the point x0 is a minimizing point for the function ƒ in the 
class of admissible solutions of (2.1) if and only if the function 

(3.2) <j>(m) = f[m9 n(m)\ 

has a minimum at mo in the class of all m in a neighborhood of mo. 
In the equation (3.2) immediately above, it is, of course, understood 
that ƒ(m, n) is the value of ƒ at the place # = (m, n). Differentiation 
of equations (3.2) and (3.1) yields the relations 

Ô0(WO, /*) = W ( # o , **) + Snf[%0, Ô»(Wo, M)], 

Oy = ôwg(x0, M) + dng[x0, dn(m0, **)], 
2 2 2 r -• 

Ô 0 ( W O , M) = àmmf(Xo, / i ) + 2 Ô w n / [ x 0 ; M, 8 » ( w 0 , /*) J 

+ W [ * 0 , Ô»(Wo, M)] + Ôn/[X0, Ô »(f»o, M)], 
2 2 r -i 

Oy = ômmg(x0, fx) + 2ôwng[#0; M, ô»(w0, M)J 
+ 5wng[x0, ôn(mo, M)] + öwg[x0, ô n(iu0, /*)]. 

If the point x0 satisfies the multiplier rule with 1=1 and if F(w, n) 
is the value of the function F\(m, n)] in (2.5), then evidently 
ômF(x0, IJL) = ônF(x0, v)=0 for every JJL and P; and the equations above, 
combined in the obvious manner, imply that 

80(ao, M) = 0, 
2 2 2 r T 

8 <K#o, M) = àmmF(%o, M) + 2ôwnF[#0; M, àn(m0i n)\ 
(3.3) 2 

+ SnnF [%0, Ô»(W0, M) j 
= MF(*o,Ö, 

where J s [ju, ôn(m0f IJL)]. By means of these relations we may now 
state and prove the following sufficiency theorem: 

THEOREM 3.1. Let xo be an admissible and regular solution of the 
equation (2.1) which satisfies the multiplier rule with (/, L) = (1, L) and 
let either of the hypotheses (b), (c), or (d) hold at x0 = (m0, n0). Further-
more let the lower bound of the second variation ô2F(xo, £) of the function 
F(x) =f(x)+L[g(x)], for all £ on the unit sphere and satisfying (2.2) 
be positive. Then there is a neighborhood N of the point x0 such that 
f(x) >f(xo) for every X^XQ in N that satisfies the equation (2.1). 
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If hypothesis (d) is valid, then the equations (3.3) established 
above and the hypotheses of the theorem show that the first varia­
tion 50(mo, M) vanishes for all JX and that there is a positive constant 
B such that 

(3.4) 8V(W0,M) = d2F(*o,0 M I C 
where £ = [/z, 8n(m0, ju)]. Since however X is the composite of M and 
N, the value of ||£|| is equal to the greater of # | |M| | and &IMI» where a 
and ô are positive constants,17 and the relation (3.4) then implies that 
the hypotheses of Theorem l . l are satisfied at the point m0. The theo­
rem now follows for this case, as may be seen with the help of a 
remark in the first paragraph of this section. 

The proof of the theorem when the hypothesis (b) or (c) holds at 
the point Xo is similar to the one above but is somewhat more compli­
cated. Since at x0 hypothesis (c) is applicable every point £ is uniquely 
expressible as M(£) + K £ ) Î and since both M and N are linear and 
closed, it is quite easy to see that ju and v are linear in £. To show 
that they are also continuous we may consider a sequence fw which 
converges to a point £0 and is such that the sequence /x(£w) converges 
to JUO. I t is then an immediate consequence of the closure of the set M 
and the uniqueness of the representation of each £ that M(£O) =Mo, and 
hence by a theorem on linear operators it follows that /x is continu­
ous.18 Similarly it may be shown that v is continuous, and therefore 
since £=/*+*'> it is true that there is a positive constant k^2 such 
that 

(3.5) greater [*||M||, k\\v\\] S \\i\\ Û greater [2||/i||, 2||v||]. 

It now remains only to show that if we regard X as the composite of 
the spaces M and N and choose for the norm of (ju, v) the greater 
of the numbers a||ju||, #HHI> where k^ar£2, then the function g is of 
class C". Having shown that g has this property, we see that the 
function 4>{m) defined in (3.2) is well-defined and satisfies the rela­
tions (3.3) and (3.4), and therefore by the first of inequalities (3.5) 
that there is a positive number c such that 

o2(j>(tno, fx) = c\\fj\\, fx i n M. 

The proof may then be completed by methods like those used before. 

UNIVERSITY OF CHICAGO 

17 See Hildebrandt and Graves, Implicit f unctions and their differentials in general 
analysis, Transactions of this Society, vol. 29 (1927), pp. 127-153. 

18 See, Banach, op. cit., p. 41. 


