ON THE ABSOLUTE SUMMABILITY OF FOURIER
SERIES. II!

W. C. RANDELS

Bosanquet? has developed conditions for the absolute summability
C(a) of a Fourier series. An immediate consequence of these condi-
tions is that absolute summability is a local property for a>1. The
purpose of this paper is to show by means of an example that absolute
summability is not a local property for? a=1.

A Fourier series is absolutely summable C(1) if Z:j,llam—am_ll
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so that it is only necessary to consider
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Then at x =0, ¢(fn, £) =2f.(f) and, since
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we have
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By (1) it is possible to choose a sequence of integers {#;} in such a
way that
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The function f(x) is then defined as f(x) =>_;2 (2~ ,.(x). For this func-
tion
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since | Am(fuiy 0)| =(=1)"An(fn;, 0) for n;>m. By (2)
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so that D2 _ |Am(f, O)I = . It remains to show that f(x) ¢ L which
is easily seen since
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=0

2 2-2(n + 1) ———
i=0 3( n+ 1)

We notice that, since this function vanishes in the neighborhood
of the origin, it coincides with a function having an absolutely sum-
mable Fourier series in the neighborhood of the origin, and therefore
absolute summability C(1) is not a local property.
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COMPLETE REDUCIBILITY OF FORMS!
RUFUS OLDENBURGER

1. Introduction. We shall say that Fis a form in 7 essential variables
with respect to a field K if F cannot be brought by means of a non-
singular linear transformation in the field K to a form with less varia-

bles. Let F be a form of degree p written as aij...xxXix; « - - Xx,
@ 4, -, k=1, 2,---, n). We arrange the coefficients of F in a
matrix A whose n?~1 columns are of the form

A1j.. ok

a2i...k

Apjeo ke

The index 7 is associated with the rows of 4 and the p—1 indices
7, - - -, k are associated with the columns of 4. We assume that the
coefficients in F are so chosen that A4 is symmeltric in the sense that
the value of an element a;;. .., is unchanged under permutation of the
subscripts. It can be shown? that Fis a form in r essential variables if
and only if the rank of A is r.

A form F is said to be completely reducible in a field K if F splits

1 Presented to the Society, April 7, 1939,
2 Oldenburger, Composition and rank of n-way matrices and multilinear forms,
Annals of Mathematics, (2), vol. 35 (1934), pp. 622-653.




