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1. Introduction. We shall consider functions which are monotone 
in the following sense: x{t) is monotone if and only if x(i) is between 
x(h) and x(h) whenever / is between h and h. This definition has con­
tent only after betweenness has been defined in the domain and range 
spaces. It is our purpose to consider several definitions of betweenness 
and the properties of the corresponding monotone functions. 

2. Order-monotone functions. In this section we shall consider 
functions x(t) defined on an interval of real numbers with values in a 
linear partially ordered space X or a partially ordered topological 
group X in the sense of Kantorovitch2 [ l ] . We shall say that x{t) is 
order-monotone if it is monotone according to the definition in the 
introduction with betweenness defined as follows: t is between h, k 
if and only if h^t^k; x(t) is between x(t\), x(/2) if and only if 
x(h) ^x(t) tkx(h). Throughout the remainder of this section, x(t) is 
assumed to be order-monotone unless there is a statement to the con­
trary. 

If h <h < - - - is a sequence with t0 as a limit, it can be shown that 
lim x(tn) exists or is infinite; similarly for a monotone decreasing se­
quence, tn—>to. If lim x(tn) = l im x{tJi) =x(/0), we say that x(t) is con­
tinuous at /0; otherwise, x(t) is discontinuous there. If lim x(2n)> 
lim x(tn) both exist but are unequal, we say that x(t) has a jump 
equal to their difference. I t follows from a theorem of Kantorovitch 
[ l , p. 130] that when x(t) is order-monotone on a closed interval, the 

1 Presented to the Society, September 6, 1938. 
2 Let X be a class of elements x which form an additive abelian group. Further­

more, let there be a relation > denned so that for some of the elements x e X the rela­
tion x>0 holds. We assume that this relation satisfies the following postulates: 
I. The relation x>0 excludes the relation x = 0. I I . If # i > 0 and tf2>0, then x\-\-X2>0. 
I I I . To each element x t X there corresponds at least one element X\ z X such that 
# i ^ 0 and xi—x^O. IV. If # > 0 and \ > 0 is a real number, then \x>0. V. For every 
set E bounded above there exists a least upper bound sup E. 

If I, I I , I I I , V are satisfied in X, it is called a partially ordered topological group. 
If in addition IV is satisfied in X} it is called a linear partially ordered space. 

If x2—#i>0, we say #2>xi. In a partially ordered space it is possible to define an 
absolute value \x\ of x; the absolute value of x is an element in the space and has the 
formal properties of the absolute value of a real number. For the definition of \x\, 
the definitions and properties of limits, and other results, the reader is referred to the 
paper of Kantorovitch. 
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number of points of discontinuity at which the jump is equal to or 
greater than a fixed element in X is finite.3 Furthermore, if Xi(i), 
Xî(f) are order-monotone in the same sense, their sum Xi(t)+X2(t) is 
order-monotone in that sense also. 

Let x(t) be any function from a ^ ^ & t o a partially ordered topo­
logical group X; x{t) is not assumed to be order-monotone. Subdivide 
aSt^b by points U such that a = t0<h< • • * <tn~b, and form the 
sums ]C"=01 *(^'+i) ~~x(k) I • If t n e s e t °f such sums formed for all sub­
divisions oî a^t^b has an upper bound (a finite element of Xy and 
not an improper upper bound of the entire space), we say x(f) has 
bounded variation. Furthermore, 

sup < ]T | x(ti+i) — %(ti) I ( 

is called the total variation of x(t) on a^t^b and is denoted by 
Va6 [#(£)]• If x{t) is order-monotone, it can be shown that it has total 
variation equal to \x(b)— x(a)\. Let x(t) be a function of bounded 
variation from aSt^b to a partially ordered topological group X; it 
can be expressed as the difference of two order-monotone increasing 
functions which are bounded and greater than zero for each value of t. 
In particular, we can show that 

*(0 == {vl[x(s)] + xo} - {v![x(s)] + xo - *( / )} , 

where x0 is a properly chosen constant, is a representation of the form 
stated. Furthermore, it is easily shown that the linear extension of the 
set of order-monotone functions x(t) from a ^ ^ i t o a linear partially 
ordered space X is the class of functions of bounded variation. 

Finally, let Xi(t), x2(0» * * * be a sequence of order-monotone func­
tions defined on a St ^b such that lim xn(t) exists for each t and equals 
#(/). Then x(t) likewise is order-monotone. 

3. Metric-monotone functions. We shall now consider functions 
x(t) defined on an interval of real numbers with values in a complete 
metric space X with elements xi, x% and distance function p(xi, X2). 
We shall say that x(t) is metric-monotone if it is monotone according 
to the definition in the introduction with betweenness defined as fol­
lows: t is between h, h if and only if kStSk\ x(i) is between x(h)> 

3 Let nx denote the sum of n elements x\ Kantorovitch has shown that the set of 
elements nx, (n = l, 2, • • • ), is unbounded (see postulate V). If x(t) is order-monotone 
increasing, for example, on a^t^band has n points of discontinuity at which the 
jump exceeds xt then x(b) —x(a) >nx, from which the result stated follows. 
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x(t2) if and only if p[#(/i), x(k)] =p[x(h), x(t)]+p[x(t), x(h)] (com­
pare a definition of betweenness given by Menger [2, pp. 77-81]). 

If x(t) is metric-monotone on an interval, its discontinuities are 
either simple discontinuities or infinities, and the latter can occur 
only at the ends of the interval of definition. Let the jump at a simple 
discontinuity be defined as the distance between the two limits. If the 
interval of definition of a metric-monotone function is closed, the 
number of discontinuitities at which the jump exceeds a given con­
stant is finite, and the set of all discontinuities is denumerable. The 
variation of a function x{t) with values in a metric space is defined as 
a number in the usual way. The decomposition of a function x(t) of 
bounded variation with values in a normed vector space into a sum of 
metric-monotone functions is lacking; it appears that this decomposi­
tion depends essentially on relations of order. If Xi(t), ^(0» * * * 1S a 

sequence of metric-monotone functions defined on a ^ / ^ & , and if 
lim xn(t) exists for each t and equals x(t)y then x(t) is also metric 
monotone. 

4. Sphere-monotone functions. In this section we shall consider 
functions x(t) defined on an interval with values in a metric space X. 
We shall say that x(t) is sphere-monotone if and only if it is monotone 
according to the definition in the introduction with betweenness de­
fined as follows : / is between tu h if and only if h ^ t g h ; x(t) is between 
#(/i), x(t2) if and only if every open sphere which contains x(h), x(fa) 
also contains x(i). 

The discontinuities of a sphere-monotone function are of certain 
simple types only. Let h<t2< • • • be a sequence of numbers on the 
interval of definition of x(t), and let tn—HQ. Then either x(tn) tends to 
a limit and x{t) has a limit at /0 on the left equal to it, or the set 
{#(/n)} has no point of accumulation in X. If t0 is an interior point 
of the interval of definition of #(/), similar results hold at /o on the 
right. Thus besides simple discontinuities and infinities, a sphere-
monotone function has a third type of discontinuity that may be 
described as wandering. As in all previous cases, an infinity can occur 
only at an end point of an open interval on which x(t) is defined. 
There are no wandering discontinuities at least when the set of values 
of x(t) is compact. 

In all previous cases, a monotone function has been a function of 
bounded variation; a sphere-monotone function, however, need not 
have bounded variation (see an example given by Graves [3, p. 166]). 
If x\{t), #2(2) > * * * is a sequence of sphere-monotone functions, and if 
lim xn(f) exists for each / and equals x(t)f then x(t) is also sphere-
monotone. 
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A function x(t) defined on an interval with values in a metric space 
X is said to be measurable if and only if for every open sphere S in X 
the set Et[x(t) t S] is measurable. Every sphere-monotone function 
x(t) is measurable in this sense. Bochner [4, pp. 263-265] has also 
given a definition of measurable function. A necessary and sufficient 
condition that x(t) be measurable in the sense of Bochner is that it 
be measurable, and that the set of values of #(£), omitting at most 
those corresponding to / on a set of measure zero, be separable. The 
function in the example of the last paragraph (Graves [3, p. 166]) is 
sphere-monotone and hence measurable, but since the distance be­
tween each two of its values is one, it does not satisfy the condition 
for Bochner measurability. There are thus measurable functions 
which are not measurable in the sense of Bochner. 

5. Other monotone functions. I t is possible to define still other 
types of monotone functions ; all that is required is that betweenness 
be defined in both the domain and range spaces of x(t). In particular, 
let x(t) be a function defined on an "interval" at=Lt^b of a partially 
ordered topological group with values in a space of the same kind. 
The number of points of discontinuity at which the jump exceeds a 
given constant may not be finite; with this exception, the results given 
in §2 hold for this monotone function also. I t should be observed that 
the Arzelà real-valued monotone functions of several variables are 
special cases of these monotone functions. 

In a linear space, the following definition of betweenness is a natu­
ral one: x is between xi, #2 if and only if x = dxi+(l— 0)#2, where 6 
is a real number such that OSO^ 1. Corresponding to this definition 
of betweenness we have linear-monotone functions; apparently they 
have not been studied previously. An account of them will be given 
elsewhere. 
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