
PROPERTIES OF GENERALIZED DEFINITIONS OF LIMIT* 

RALPH P. AGNEW 

1. Introduction. The theory of summability has been the subject 
of several excellent expository addresses f presented to this Society. 
These addresses have dealt largely with properties of matrix trans­
formations 

00 

A: ys = ^AtjXt, 

which associate with certain sequences xo, xi, x2, • • • of complex num­
bers the sequences yo, yi, • - • determined by use of a given matrix 
ASft of complex constants. 

I t is my object to discuss, and to compare with the matrix trans­
formations A, the kernel transformations 

ƒ
i oo 

K(s, t)x(t)dt, 
o 

which associate with certain complex-valued functions x{t) defined 
over 0 < / < oo the functions y(t) determined by a given kernel K(s, t) 
belonging to a certain class of complex-valued functions which we 
specify in §3. Transformations of this form were first studied by 
Silverman. % More recent contributions § have been made by Knopp, 
Hill, Raff, and Day. 

The point of view of the present study of kernel transformations 
is quite different from that of earlier ones. The earlier studies have 
started with either the Riemann or Lebesgue integral and the class X 

* An address delivered before the New York meeting of the Society on February 
25, 1939, by invitation of the Program Committee. 

t W. B. Ford, this Bulletin, vol. 25 (1918-1919), pp. 1-15; R. D. Carmichael, ibid., 
vol. 25 (1918-1919), pp. 97-131; C. N. Moore, ibid., vol. 25 (1918-1919), pp. 258-276; 
W. A. Hurwitz, ibid., vol. 28 (1922), pp. 17-36; and C. N. Moore, ibid., vol. 37 (1931), 
pp.240-250. 

{ L. L. Silverman, On the notion of summability f or the limit of a function of a con­
tinuous variable, Transactions of this Society, vol. 17 (1916), pp. 284-294. 

§ K. Knopp, Zur Theorie der Limitierungsverfahren, Mathematische Zeitschrift, 
vol.31 (1929-1930), pp.97-127; pp.276-305. J.D.Hill, A theorem in the theory of sum­
mability, this Bulletin, vol. 42 (1936), pp. 225-228. H. Raff, Lineare Transformationen 
beschrankter integrierbarer Funktionen, Mathematische Zeitschrift, vol. 41 (1936), pp. 
605-629; Über lineare Integraltransformationen, Monatshefte für Mathematik und 
Physik, vol. 45 (1937), pp. 379-393. M. M. Day, Regularity of f unction-to-function 
transformations, this Bulletin, abstract 44-9-332. 
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of all functions x(t) which are bounded and integrable over each finite 
interval; and the fundamental problem solved is that of characteriz­
ing the functions K(s, t) defining transformations regular over the as­
signed set X, that is, transformations such that each x t X for which 
lim^oox(/) exists has a transform y(s) for which l im^oo^) = l i m ^ ^ M -
The papers of Knopp are apparent exceptions; but later writers have 
implied that Knopp should have introduced the set X to make his 
work precise. The present study starts with a definition of integral 
(see §2) and a kernel i£(s, /) belonging to a certain class of functions 
(see §3) ; and the fundamental problem which presents itself is that 
of setting up criteria to determine what properties the transformation 
thereby determined has or fails to have. 

This address is entirely self-contained in the sense that no knowl­
edge of either the now extensive known theory of matrix transforma­
tions, or the more modest known theory of kernel transformations, 
is assumed, and that all proofs are given in terms of fundamental no­
tions of analysis. That this is so is not purely a recognition of the 
fact that this address should be so constructed to meet the needs of 
optimistic individuals who, without previous experience with the the­
ory of summability, might hope to gain from this address some knowl­
edge of the theory. The author has felt for years that those who work 
in the theory of summability (and in particular the author himself) 
should have in print a self-contained foundation for further work in 
the theory of kernel transformations. 

Some examples and remarks indicate the manner in which we begin 
to develop de novo the theory of kernel transformations. Two of the 
simplest and most useful transformations of the forms A and K re­
spectively are 

s 1 
(1.01) y.= ] £ —T7*t> * = 0, 1, 2, • • -, 

«-o s + 1 
in which Ast — l/(s + l) or 0 according as O^tSs or t>s; and 

ƒ. « i 
— x(t)dt, s>0, 

o s 
in which K(s, /), defined for s>0, is 1/s or 0 according a s O ^ / ^ ^ o r 
t>s. We shall emphasize later the point that the transformation 
(1.02) does not become meaningful until the definition of integral 
used there has been specified. Let us use for the moment either the 
Lebesgue integral or the "improper" Cauchy-Riemann integral. If we 
let the function y(s) given by (1.02) be denoted by yi(s), and let the 
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(1.02) transform of yr~i(s) be denoted by yr(s), it can easily be shown 
by induction that , for each r = l, 2, • • • , 

(1.03) y ^ ^ — ^ - l ( l o g - ) x{t)dt. 

As a matter of fact (1.03) defines, for each complex r having a positive 
real part, a transformation (the Holder transformation of order r) 
with kernel 

K(s, t) = [log (s/t)]^/T(r)s9 0<t<s, 
(1.04) 

= 0, / ^ s. 
The orthodox (e, S) definition of limit is, from a sufficiently abstract 

point of view, one scheme for associating with each sequence xa, or 
function s(x) belonging to a certain class, a number L called its limit. 
The transformations A and K furnish generalized definitions of limit 
or methods of summability when one defines l i m ^ ^ and lim5^yis) 
to be generalized limits of a sequence xs and a function x(s), respec­
tively, when the limits exist. We conform to accepted terminology in 
calling x8 summable A to L in case y0f yh • • • exist and lim8^00ys = L} 

and x(s) summable* K to L in case 3/(5) exists for s>0 and l i m ^ ^ ^ s ) 
— L. Thus each method of summability furnishes, as does the (e, ô) 
definition of limit, a scheme of associating with certain sequences or 
functions numbers which may be called their "limits." 

A transformation A (or matrix A) is called regular if each conver­
gent sequence xt is summable A to the value to which it converges. 
For example, it is well known and is a good exercise for undergradu­
ates to show that (1.01) is regular. Formulation of a useful definition 
of regularity of K is not quite so simple, and is postponed to §5. 

Let A9tt be a matrix and let xt and yt be sequences so related that 
00 

(1.05) y8 = 2^A8ttxt, s = 0, 1, 2, • • • . 

If step functions x{t) and y(s) and a step kernel K(s, t) are defined 
by the equations 

(1.06) x(t) = xlt], y(s) = y[8], K(s, t) = A[8h[t], 

where [r] denotes the greatest integer less than or equal to r, then 

* It is of course possible to modify these definitions, calling x8 or x(s) summable A 
or K to L in case ya or y (s) exist for all sufficiently great s and l i m , . ^ * = L or 
lima^00>'(<s)=L. These modified definitions, which turn out to be not significantly 
different from ours, are discussed at the end of §9. 
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under any one of several definitions of integral (1.05) can be written 

ƒ
» 00 

K(s, t)x(t)dt, s > 0. 

o 
This means simply that any matrix transformation A can be repre­
sented as a kernel transformation K in which the domain and range 
are limited to step functions constant over each interval n^t<n + ly 

n = 0, 1, • • • . On account of this fact (which will be discussed in more 
detail in §10), an advance in the theory of matrix transformations 
suggests at least the possibility of making a corresponding advance 
in the theory of kernel transformations. 

The theory of kernel transformations K has lagged far behind the 
theory of matrix transformations A. This is unquestionably due in 
part to the fact that the theory of K is really more difficult than that 
of A. The author feels that this is also due in part to the fact that in 
spite of much work on linear transformations in general and kernel 
transformations in particular, there never has been an adequate foun­
dation laid for development of the theory of K analogous to recent 
developments in the theory of A. 

When we compare a kernel transformation K with a matrix trans­
formation A, a fundamental difference between the two appears im­
mediately. On the one hand, 

N 

(1.08) ]T) A8ttxt = A8t0x0 + A8,iXi + • - • + ASjNxN 

always exists and has a unique meaning for all mathematicians when 
a matrix A, a sequence xi, x2, • • • of complex numbers, and an integer 
N^0 are given. On the other hand, specification of a kernel K(s, /), 
a function x(t), and a number h>0 is not (in these days when a multi­
plicity of different definitions of integral are used in analysis) sufficient 
to determine whether 

ƒ> h 

K(s, t)x(t)dt 
0 

exists. Not only the fact of existence of (1.09) but also the value of 
(1.09) may depend upon the definition of integral used. 

I t is neither economical nor satisfying to develop the theory of 
kernel transformations first for Riemann integrals, then for Lebesgue 
integrals, then for one or more other integrals, and then perhaps 
finally for general integrals of Banach type under which each bounded 
function is integrable over each bounded set. Moreover an at tempt to 
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study kernel transformations without prescribing the type or the 
properties of the integrals involved is utterly futile and meaningless. 

It turns out tha t a considerable part of a theory of K analogous to 
known theory of A can be developed for any definition of integral 
having the eight properties which we give in §2. In §3, we define 
kernel and in §4 we discuss the class K^ of functions x{t) such that 
the integral 

ƒ' K(s, t)x(t)dt 

exists for each pair of positive numbers h and s. In §5, regularity is 
defined and discussed. In §§6-8, we give several theorems which sup­
ply the tedious parts of proof of necessity for theorems on regularity, 
and so on, in §9. The theorems of §§6-8 are made sufficiently general 
to furnish proof of necessity for many other theorems in the theory 
of summability which we shall be unable to give in a paper of tem­
perate length. In §10, transformations whose kernels are step kernels 
are related to sequence-to-function and matrix transformations. In 
§11, the scope of regular transformations is discussed briefly. Finally 
in §12 we indicate the possibility of taking point sets other than the 
set of positive numbers for the domains of 5 and t in kernel trans­
formations. 

2. Properties of integral. In the future we use those and only those 
definitions of integral having properties which we now specify. To sim­
plify our statements of the properties, we use the symbol "ƒ e I(a, b)" 
to indicate that a and b are finite real numbers with a <b and that ƒ (t) 
is a member of the class I(a, b) of complex-valued functions integra-
ble over the interval a^tSb. 

I. If fi, f2 £ I(a, b) and ci, c2 are complex constants, then Cifi-\rC2f2 
e I(a} b) and 

(2 ƒ» b r* b s* b 

[Cj/l(0 + Cff,(t)]dt = Cl Mt)dt + C2 I ft(t)dt. 
a J a J a II. If fi and j% are real, then f 1+if2 e I(a, b) if and only iffi e I(a, b) 

and ƒ2 z I(a, b). 
III. If f e / (a , c) and a<b<c, then fzl(a, b), fzl(b, c), and 

(2.2) fCf(t)dt= f f(t)dt+ fCf(t)dt. 
J a J a J b 

If a<b<c,f e I(a, b), and f £ I(b, c), then f 11 (a, c) and (2.2) holds. 
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IV. If a Sb y then 

(2.3) f ldt = b - a. 
J a 

V. If fly f2 t I{ay b) while f\ and j \ are real and f\{t) 1>fï{t) over 
aSt^by then 

(2.4) f Mt)dt^ f f2{t)dt. 

This implies that if f e I {a, b) and f is real, then the integral of f is real. 

VI. Iff, l/l zl(a,b),then 

(2.5) I f f(t)dt\g f \f(t)\dt. 
\J a I J a 

VII. If y f or each h with a <h <b y f y \f\ t I{ay h) and 

(2.6) f \f(t)\dt<M, 
J a 

M being a constant independent of hy then ƒ e I {a, b) and 

(2.7) f ƒ ( / )&= lim f f{t)dt, 

likewise, iff e I{hy b) when a<h<b and 

(2.8) f I f{t)\dt < My 
J h 

M being a constant independent of hf then f 11 {a, b) and 

(2.9) f ƒ (* )*= lim f f{t)dt; 

except that y for any integral {and in particular f or the Riemann integral) 
for which ƒ z 7(a, b) implies that f{t) must be bounded over a^t^byVll 
shall apply only to functions f{t) bounded over a^t^b. 

VIII . The left member of 

ƒ
• oo /% h 

f{t)dt = lim I f{t)dt 
a, à-*00 J a 

is defined to be the right member whenever the right member exists. 
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Any integral satisfying I-VIII will be denoted hereafter by ƒ. 
All of the conditions I to VII (that is, those which pertain to finite 

intervals) are satisfied by both Riemann and Lebesgue integrals. 
These integrals, extended over (0, oo) by (2.91), will be called simply 
Riemann and Lebesgue integrals respectively; hence Riemann and 
Lebesgue integrals satisfy I-VIII. Existence of 

ƒ> 00 

f(t)dt 
a 

does not imply existence of 

(2.93) f" | ƒ(*)!#. 
J a 

However, properties I, III, V, VI, VIII, and the Cauchy criterion for 
convergence imply that , if ƒ e I(a, h) for each h>a and (2.93) exists, 
then (2.92) must exist. 

Properties III, V, VI, and VII imply that ƒ shares with Riemann 
and Lebesgue integrals the property of being independent of the value 
of the integrand at any finite set of points. For example, if ƒ e / (a , b) 
and g(t) =ƒ(/) for a<t<b, then g e I(a, b) and 

r g{t)dt = r /m 

irrespective of whether g(a) and g{b) agree with f (a) and f(b) or are 
different from f (a) and f(b). Again, if ƒ e I(a, b) and g e lib, c) where 
a<b<c, and h(x) =f(x) or g(x) according as a ^ x ^ b or b<x^c, then 
h e I(a, c) and 

ƒ» c /» b /» e 

h(x)dx = I f(x)dx + I g{x)dx. 
a J a J b 

Properties of ƒ imply that , if ƒ is real and bounded and ƒ e / (a , &), 
then the integral over (a, b) of ƒ lies in the closed interval bounded 
by the lower and upper Darboux (sometimes called Riemann) integ­
rals over (a, b) of/. 

3. Definition of kernel. We next decide what kind of functions 
K{s, t) we shall admit as kernels in the transformation 

/* 00 

K: y(s) = I K(s, t)x(t)dt. 

Suppose the integral chosen happens to be a Riemann integral. It is 
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then true that , if x(t) = 0, 

(3.01) f K(s9 t)x(t)dt, h > 0, 
J o 

will exist for every function K(s> t)\ if, however, one wishes (3.01) to 
exist for all functions x{t) in some significant class of functions, it 
would be at least unpleasant to have a function K(s, t) which is not 
a Riemann integrable function (say unbounded or perhaps nonmeas-
urable) of / over O^t^h for each s. In other words, it seems reason­
able to impose some "condition of integrability" on K(s, t) to ensure 
that the transformation K will be significant. Accordingly we adopt 
the following definition.* 

A complex-valued function K(s, t) will be called a kernel if the in­
tegrals 

(3.02) I K(s,t)dt, h,s>0, 
J o 

ƒ> h 

K(sh t) sgn K(s2, t)dt, h, sh s2 > 0, 

o 

ƒ• h 

K(sh t)<B, sgn K(s2, t)dt, h, sh s2 > 0, 
o 

all exist. Existence of (3.03) and (3.04) implies existence of 

ƒ» h 

K(sh t)Z sgn K(s3, t)dt, h, sh s2 > 0. 

o 
Setting Si = S2 = s in (3.03) gives existence of 

ƒ• h 

| K(s, t) | dt, h, s > 0. 

o 
The class of functions K(s, t) satisfying (3.02), (3.03), and (3.04) 

is the class referred to in §1. Accordingly K denotes in this paper 
either a function satisfying (3.02), (3.03), and (3.04), or the trans­
formation determined by such a kernel. 

For the case of Lebesgue integrals, existence of (3.03) and (3.04) 
need not be explicitly required since it is implied by existence of 
(3.02). For the case of Riemann integrals, however, existence of (3.02) 
does not imply that of (3.03) and (3.04). The latter fact is readily 

* If u and v are real and z = u-\-iv, then î^2==w, 3z = v; and sgn z is 0 or \z\/z ac­
cording as 2 = 0 or 3=^0, so that in every case z sgn z— \z\. 
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proved by use of the function g{i) defined as follows. Let ri, r2, • • • 
denote in some order the positive rational numbers, and let g(t) = rn/n 
or 0 according as t = rn or t is irrational. In each interval (0, &), g(t) 
has the Riemann integral 0 while sgn g(t) is not Riemann integrable. 
Thus we have here one more place in analysis where a theory based 
on use of Lebesgue integrals avoids assumptions [in this case (3.03) 
and (3.04)] which are required for a corresponding theory based on 
Riemann integrals. 

The conditions (3.02), (3.03), and (3.04) do not (unless ƒ happens 
to be of a restrictive type) imply tha t K(s, t) is bounded over each 
interval 0<t<h. For example, if <R/=^l the function (1.04) associated 
with the Holder transformation (1.03) of order r, being unbounded 
over 0<t<s for s>0, would not be a kernel when ƒ is the proper 
Riemann integral; but when ƒ is either the Cauchy-Riemann im­
proper integral or the Lebesgue integral, the function is a kernel when 
<R/>0. 

4. The class IQ. If a function x is such that 

K(s, t)x(t)dt 
0 

exists for each s>0, then conditions VIII and III of §2 imply that 

ƒ• h 

K(s, t)x(t)dt 
o 

must exist for each h, s > 0. Let jfi^ be the class of functions x for which 
F(h, s) exists for h, s>0. The condition x e K^ is essentially a local 
"condition for integrability," and is not concerned with the behavior 
of x(t) as /—»oo. If the kernel K(s, t) is of finite reference (that is, if 
for each s, K(s, t)=0 for all sufficiently great /), then x e^ impl ies ex­
istence of the K transform y(s); but otherwise x t J^ does not ordina­
rily imply existence of y(s). For many transformations, the condition 
x e ^ i s precisely the condition that x(t) be integrable over each finite 
interval (0, h). 

The class ^ is linear, that is, if xi, x2 e J ^ and Ci, c2 are complex con­
stants, then C1X1+C2X2 ei^. 

The conditions which we have imposed upon ƒ and K are sufficient 
to make i^ an extensive class of functions. Indeed, some of the condi­
tions were imposed to ensure that i ^ contains the functions Xo(t) 
which are described in the following lemma, and which we shall use 
later. 
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LEMMA 4.1, LetO = hi<Ji2< • • • be a sequence for which limn^00^w = £ 
may be either finite or + oo. Let si, s2, • • • 6eû sequence of positive num­
bers. Let ai, 02i • • • Jea sequence of real numbers with \<rn\ ^ 1 /or eac/z 
w. LeJ Xo(t) be defined by the formulas 

(4.11) Xo(t) = <r„ sgn 2JT(sn, *), hn û t < An+i, 

a t ó , iw £#se £ < oo, £3/ /^e additional formula 

(4.12) *o(*) = 0, * ^ £ . 

T'Aéra Xo e J^, ^#0 e-^, ö«d 3xo e ^ \ 

I t is easy to modify Lemma 4.1 and its proof to cover functions 
xo(t) defined analogously to (4.11) over intervals whose end points 
form a decreasing rather than an increasing sequence. 

To prove tha t ^ x 0 e i^ , let s>0 and h>0 be fixed. Our hypotheses 
on ƒ and K imply existence of 

ƒ» hn+l 

K(s, t)<R. sgn K(sn, t)dt, n = 1, 2, 

Since an is real, it follows that , if we set for simplicity Xi(t) —^Xoit), 
then 

ƒ» hn+l 

K(s, t)x!(t)dt, n = 1, 2, 
1 ^n+l 

K 

exists. Therefore, for each m = l, 2, 

(4.15) Fi(6, 5 ) = f X(s, 0 * i ( 0 * 
J 0 

exists when b = hm. If A<£, we can choose hm>h and conclude exist­
ence of Fi(A, s). If £= + 0 0 , this implies that Xx = cE(xo e J^. If £ < 00, 
then existence of Fi(b, s) for 5 < £, the fact that i£(s, t)x\{t) is bounded 
over 0 ^ / ^ £ if K(s> t) t 7(0, f) requires that K(s, t) be bounded over 
0 ^ / ^ £ , and the inequality 

(4.16) f I £(*, /)*i(0 I dt S f I K(s, t)\dt, 0 < b < £, 
«^ 0 ^ 0 

imply by VII of §2 that JFI(£, S) exists. If h>%, then existence of 
Fi(£, s) and (4.12) imply existence of Fi(h, s). Therefore %x0 = xi £ ^ . 
We can prove in the same way that 3x0 e ^ , and linearity of F^ then 
gives ^0 £ ^ . 
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5. Regularity. We recall that a matrix transformation A is said to 
be regular if each convergent sequence is summable A to the value 
to which it converges, that is, if existence of lim xt implies existence 
of 3>o, yu - • - and the equality lim ys = lim xt. Necessary and sufficient 
conditions for regularity of A are, by the Silverman-Toeplitz theo­
rem, 

oo 

(5.01) Z U * * | < M, s = 0, 1, 2, • • • , 

(5.02) lim A8t = 0, * = 0, 1, 2, • • • , 
s—• » 

oo 

(5.03) lim TlA,t= 1, 

M being a constant independent of s. 
We use this theorem, and the theorems given later in this para­

graph, merely for purposes of analogy; their truth is well known and 
will be demonstrated at the end of §10. The matrix A (or matrix 
transformation A) is regular over a class C of sequences if each con­
vergent sequence x z C is summable A to the value to which it con­
verges. The conditions (5.01) and (5.02) are necessary and sufficient 
to ensure that A be regular over the class of null sequences (sequences 
converging to 0). Also the conditions (5.01), (5.02), and (5.03) are 
necessary as well as sufficient for regularity of A (which may or may 
not be real) over the class of real sequences. 

If we should call a kernel transformation K regular only when it 
has the property that each function x(t) for which lim^oo#(/) exists 
has a transform y{s) for which \vms^^y{s) =lim^00^(^), then it would 
turn out tha t no kernel transformation whatever involving a Rie-
mann or Lebesgue integral could be regular. Consider, for example, 
the transformation 

1 rs 

(5.04) y(s) = — x(t)dt, s > 0, 
s J o 

in which the integral is that of Lebesgue. If x(t) = l/t2, then 
lim x(t)=0; but y(s) does not exist (may be said to be +<*>) for 
each 5 > 0 and accordingly lims^O0y(s)=0 fails. Also, if x(t) is a 
bounded function for which lim x ( / )=0 but which is non-measur­
able over each finite interval, then again y(s) fails to exist for each 
s>0 and lime^yis) = 0 fails. However, if x(t) belongs to the class of 
functions which are integrable over each finite interval and converge 
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as /—><*>, then it is well known and easy to show that y(s) defined by 
(5.04) exists and tha t l i m ^ ^ s ) =lim^00x(/). 

These considerations imply that the following definition, which is 
analogous to one involving matrix transformations, will be useful. 
The transformation K is regular over the class C of functions x if each 
x e C for which lim x{i) exists is summable K to lim x(t). For example, 
(5.04) with Lebesgue integral is regular over the class C\ of continu­
ous functions and is also regular over the larger class C2 of functions 
Lebesgue integrable over each finite interval (0, h). 

The largest class of functions over which a transformation K could 
possibly be regular is the class K^ of §4. Accordingly, we define K 
to be regular if it is regular over the class K^. 

Regularity is only one of several properties in which we shall be 
interested. However, the conditions which characterize regular trans­
formations K are so important in the theory of summability that it 
seems desirable to present them here and to discuss them briefly. 

THEOREM 5.1. In order that K be regular over ^ , it is necessary and 
sufficient that 

ƒ
i oo 

| K(s,t)\ dt < oo, 5 > 0, 
0 

ƒ
> oo 

| K(S9 t)\dt = M < oo , 
o 

ƒ> h 

K(s, t)x(t)dt = 0, h>0,xzl£, 

o 

ƒ• 0 0 

K(s, t)dt = 1. 
o 

In the statement of this theorem, the phrase "K be regular over^/ ' 
is used instead of the equivalent phrase UK be regular" in order to 
facilitate the statement of closely related theorems in §9. Theorem 5.1 
will be proved in §9. Meanwhile we assume it and discuss the condi­
tions involved. 

The analogy between (5.01) on the one hand and (5.11) and (5.12) 
on the other hand seems satisfactory when we bear in mind that a 
sequence So, Si, S2, • • • of real numbers is bounded whenever 
lim sup | S n | < 00, but that a corresponding conclusion involving 
functions cannot be drawn. It is obvious either from the definition 
of regularity or from the conditions of Theorem 5.1 that, if Ki(s, t) 
is a regular kernel, and cf>(s) is any function of 5 which is defined for 
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s > 0 and converges to 1 as s—>oo (say <f>(s) = 1 +\f/(s)/s2 where \f/(s) is 
a bounded non-measurable function which converges to 1 as s—>0), 
then K2(s} t) =<j>(s)Ki(s, i) is also regular. In particular, if Ki(s, t) is 
the simple kernel of (1.02), then both Ki and K2 are regular, and the 
equality 

I K-2(s, t) I dt = I K,(s, t)dt = I 4.(5) I 
0 I J 0 I 

shows that the condition 

ƒ
* 00 

I K(s, i)\dt < 00 , 
_ - 0 

which is analogous to (5.01), is not necessary for regularity of K. In­
deed, the choice of K\ and <j> suggested above shows that K can be 
regular even though 

s>0 
f \K{s,t) 

J 0 
(5.17) l.u.b. \K(syt)\dt = 00, h>0. 

The condition (5.14) is an exact analogue of (5.03). The condition 
(5.13) is by no means as attractive as the corresponding condition 
(5.02). However the real test of (5.13) comes when one seeks to de­
termine whether a given kernel satisfies it. Actually it is often easier 
to determine whether a given kernel satisfies (5.13) than to determine 
whether it satisfies (5.12), and from this point of view we may accept 
(5.13). We do not in this paper make any at tempt to present (5.13) 
in a different or more attractive form. Some consequences of the con­
ditions for regularity are given by the following theorem. 

THEOREM 5.2. If K is regular, then 

ƒ> h 

K(s,t)dt = 0, h > 0, 
0 

ƒ> 0 0 

K(s,t)dt = 1 , h ^ 0, 
h 

and 

ƒ
• 0 0 

I K(s, t)\dt ^ M < 00 . 
h 

The condition (5.21) is obtained by setting x(i) = 1 in (5.13); and 
(5.22) is implied by (5.14) and (5.12). The inequality 
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ƒ> 00 

I K(s,t)\ dt ^ M, ^ 0 , 
h 

is implied by (5.12) and (5.22). Since the middle term of (5.24) is 
a monotone decreasing function of h, (5.24) implies (5.23). 

The number 

ƒ
» 00 

I K{s, t) | 
h 

dt 

of condition (5.23) turns out to be significant in determining the prop­
erties which K has or fails to have. If A is defined by (5.25), then 

ƒ
> 00 

I K(s9 t) | dt; 
-,- h 

and conversely if A is defined by (5.26), then (5.25) holds. 
I t can be shown by an example that (5.11), (5.12), (5.21), and 

(5.14) are not sufficient to ensure regularity of K. 
The condition lims^O0Ast = 0 being necessary for regularity of a ma­

trix A, so also is the condition 
h 

(5.27) lim E l ^ l = 0 , h = 0, 1, 2, • • • . 

To emphasize the fact tha t conditions analogous to these are not 
necessary for regularity of K> we give 

THEOREM 5.3. Neither of the conditions 

(5.31) lim K(s,t) = 0, / > 0, 

ƒ• h 

| K(s9t)\ dt = 0, h > 0, 

o 
is necessary f or regularity of K. 

We prove this theorem by an example in which the integral is that 
of Lebesgue, and x zK^ is equivalent to the condition that x{t) be 
Lebesgue integrable over each finite interval (0, h). If xtJ^ and 
lim sup | x(t) | < oo , then 

ƒ> s pist f 8+1 

——— x(t)dt + x(t)dt 
o 1 + t J\ 

(5.33) 
/» oo eis(t— 1) 

+ I x(t)dt 
J . + i l + ( / - l ) 2 
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exists for each s^O. For each s^O, K(s, t) is eist/(l+t2) or 1 or 
6 i .(*-i)/[l + ( /_ l )2 ] according as 0^t<s or s^t<s+l or s + 1 ^ / . 
Elementary integration gives, for each s^O, 

8 + 1 7T 

l(fc = — + 1. 
2 

(5.34) J j ^ o l * - ^ " - ! - * ^ 
By the well known Riemann-Lebesgue theorem 

ƒ
• h /» h 

K(s, t)x(t)dt = lim I eist[x(t)/(l + t2)]dt = 0 
for &>0, # £ J ^ . Also, 

ƒ
» oo ƒ • oo 

K(s, t)dt = 1 + e" ( [ l / ( l + Z2)]^, 
0 «^ 0 

and another application of the Riemann-Lebesgue theorem gives 

ƒ» oo 

K(s, t)dt = 1. 
0 

It follows from Theorem 5.1 that the transformation (5.33) is regular. 
But there is no / > 0 for which l i m ^ ^ i ^ s , t) exists; and if 0^a<b, 
then for all sufficiently great 5 

so t ha t 
J' 6 1 i r b i 

I K(Sy i)\dt = it > 0, 
a J a 1 + t2 

(5.37) lim f | K(s,t)\ 

exists and is positive. This proves Theorem 5.3. 
We give an example of a simple pair of regular transformations of 

finite reference to show that the conditions (5.31) and (5.32) are not 
significant in the theory of summability. Let Ki and K2 be defined by 

ƒ» 1 Ç* 8+1 

<r(s)eistx(t)dt + I x(t)dt, 
0 J 8 

ƒ 8+1 

x(t)dt, 

where <r(s) is 0 or 1 according as [s], the greatest integer less than or 
equal to s, is even or odd, and where the integrals are Lebesgue in­
tegrals. For Ki, the limits in (5.31) and (5.32) both fail to exist; for 
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i£2, both (5.31) and (5.32) hold. But i^ i= i^2 , each being the class of 
functions integrable over each finite interval (0, h) ; and if x e R^\, 
then by the Riemann-Lebesgue theorem, 

Km | y2(s) — yi(s) | = 0. 

Hence Ki and K2 are, as methods of summability, substantially iden­
tical. 

In the next two sections, we give theorems which show that even 
very moderate hypotheses on a transformation K imply that (5.11) 
and (5.12) must hold. 

6. Application of K to functions x e ^F^sih). Let K^BQI) denote the 
class of functions x(t) such that x ei^', x(t) is bounded, and x(t) = 0 for 
all t>h. If C is a class of functions, we use %C to denote the subclass 
of C consisting of the real functions in C. In several theorems of this 
and the next section, H denotes a real nonnegative constant which 
will be 0 in most of our applications. 

THEOREM 6.1. Let h>0 and H^O be fixed. If K is such that, for each 
xz%^B{h)} 

ƒ
• 00 /% h 

K(s, t)x{t)dt E= I K(s, i)x{t)dt 
0 v 0 

exists for s>H and has the property 

(6.12) l.u.b. | y(s)\ < oo, 
s>H 

then there is a constant M = M(h) < oo such that 

ƒ» h 

| K(s, t)\dt = M. 
o 

THEOREM 6.2. Let h>0 be fixed. If K is such that, for each 

ƒ» oo /•» h 

K(s, t)x{t)dt = I K(s, t)x(t)dt 
o J o 

exists for s >SQ(X), where s0(x) is a real number f or each x t ^E^BQI), and 
has the property 
(6.22) limsup | y(s)\ < oo , 

S—»oo 

then there is a constant M^M(h) < oo such that 
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ƒ• h 

| K(s, t)\dt = M. 
o 

We first prove Theorem 6.1 by assuming that 

ƒ> h 

| K(s, t) | dt = + oo , 
o 

and constructing a real function x e J^ such that | x(t) \ S1, #W = 0 for 
/>&, and the transform y(s) of re exists for s>0 and has the property 
l.u.b.|;y(s)| = + °°-

Let ao = 0, bo^h. When an and bn have been chosen such that 

(6.25) l.u.b. f n | K(s, t) | dt = + oo , 

the properties of ƒ given in §2 imply that at least one of the two defi­
nitions [an+i=an; &«+i = (a»+&»)/2] and [an+i = (an+bn)/2;bn+1 = bn] 
will make (6.25) hold when n is replaced by (n+1). Thus we obtain 
by induction a monotone increasing sequence ao, #i, #2, • • • and a 
monotone decreasing sequence bo, bi, b2f • • • , such that bn — an=

:h/2n 

and (6.25) holds for each n = 0, 1, 2, • • • . Let £ be the common limit 
of the sequences an and bn, so tha t 

(6.26) lim an = lim bn = £. 

It is easy to show that at least one of the two functions of 5 

(6.27) f \K(s,t)\dt, f n\K(s,t)\dt, 

is unbounded f or an infinit e set of wand hence f or each n = 0,1, 2, • • • . 
Treatment of the alternative case being similar, we consider only the 
case that the first is unbounded for each M = 0 , 1, 2, • • • . In this case 

(6.28) F(s, c) = f | K(s, t) \dt, s> H, 

is an unbounded function of 5 for each c in the interval 0 ^ c < f. 
Let ci = 0. Since F(s, Ci) is unbounded, we can choose Si>H such 

that F(si, Ci)>2 + 2~~1. Since existence of (3.06) implies that 
limc_*£J%Si, c ) = 0 , we can choose c2 such that Ci<c2<%, £ —c2<2~2, 
and F(su c2)<2~\ Next, choose s2>H such that F(s2l c2)>22+2~2, 
and then choose c3 such that c2<cz<^, £ — c3<2~3, and F(s2, c3) <2~2 . 
Proceeding in this manner, we obtain a sequence Si, s2, • • • of values 
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of s>H and a sequence CI<C<L<CZ< - - - of values of c such that 
cn—»£, and for each n = 1, 2, • • • 

(6.29) f | £(*», 0 | dt > 2* + 2—, f | £(*», 0 | dt < 2-», 

and therefore also 

ƒ» Cn+l 

| *:(*„,/) | * > 2». 

We are now ready to define a function xo(t) in terms of which the 
desired function x(t) will be determined. The function x0 will be of the 
type described in Lemma 4.1, and accordingly xQ e ^ . First, let 

(6.32) x0(t) = sgn K(sh t), 0 = a ^ / < c2. 

Then, using (6.31) with n= 1, we find that 

ƒi Cn+l 

K(sn, t)xQ(t)dt 
. o 

> 2n" 

holds when n = 1. When we have extended the definition of x0(t) over 
the interval 0^t<cn+i in such a way tha t (6.33) holds, we define 
Xo(t) for cn+i^t<cn+2 by the formula 

(6.34) x0(t) = crw+1 sgn K(sn+h t), 

where an+i is 0 if 

> 2n ƒ* Cn+l 

K(sn+h t)xQ(t)dt 
. o 

holds, and <rn+i is 1 if (6.35) fails. If (6.35) holds, then (7n+i = 0, so tha t 

I f* Cn+2 I I /* Cn+l I 

I K(sn+h t)x0(t)dt = j K(sn+h t)x0(t)dt \> 2n. 
If (6.35) fails, then arn+i = 1 and our inequalities give 

ƒ» C»+2 I 

K(sn+h t)x0(t)dt\ 
o I 

ƒ> cn+2 I I / » Cn+l 

K(sn+i, t)xo(f)dt - I K(sn+1, t)xo(t)dt 
C_L1 V 0 

*ƒ. 

c n + l 

Cn+2 

| iT(sn+1, 0 | <» - 2» ^ 2»+l - 2" = 2". 
<M-l 
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Thus, in both of the two cases, we find that (6.33) holds when n is 
replaced by n+1. 

This induction serves to define x0(t) over 0 ^ / < £ ; let x0(t) = 0 for 
/ ^ £ . Then, since Xo ZI^BQI), the transform yo(s) of Xo exists for each 
s>0. For each » = 1, 2, • • • we find 

I y*(Sn) 1 = 1 K($n, t)Xo(t)dt 
J 0 

^ I #(*», t)Xo(t)dt - I | J£($n,/)<ö| > 2W" 1 

This implies tha t l.u.b. | yo(s) | = + °° • While x0 e S^BQI), it is not true 
that Xo need be real unless K is real. Let x0(t) = xi(t)+ix2(t), where 
xi(t) and x2(t) are real. Then by Lemma 4.1, Xij X2 t J^ and hence 
xi, X2 ZR^BQI). If we let yi{s) and y^is) denote the transforms of X\ and 
X2, then 

(6.37) I yi(sn) + iy2{sn) | = | y*(sn) \ > 2—1 - 2~n. 

This implies that not both l.u.b. yi(s) and l.u.b. 3̂ 2(̂ ) can be finite. Ac­
cordingly, if x(s) denotes a properly chosen one of the functions Xi(s) 
and X2(s), then x t %J^B(h) and the transform y of x is unbounded. 
This proves Theorem 6.1. 

Proof of Theorem 6.2 is practically identical with that of Theorem 
6.1. Contradiction of the conclusion (6.23), which is weaker than 
(6.13), gives 

f \ 
(6.38) lim sup I | K(s, t) \ dt = + 00 , 

«-•00 J Q 

which is stronger than (6.24) and enables us to choose the sequence 
Su S2, - - • in such a way that s w + i > s n + l and hence sn—»oo as w—>oo. 
Then (6.37) would imply lim sup | y(s) \ — + 00 and thus complete the 
proof of Theorem 6.2. 

7. Application of K to functions x t i^0. Let ^ 0 denote the subclass 
of functions x e j^which are bounded over 0 <t < 00 and converge to 0 
as /-—>oo. It is clear that for each h>0 the class JR^BQI) is a subclass 
of ^ 0 . The main theorems which we prove in this section are 7.4 and 
7.5. We give first four simpler theorems which we shall need. 

THEOREM 7.1. If K is such that for each x t ^f^o 

1 c ^ 
(7.11) lim sup I K(s,t)x(t)dt 

h—>°o J J 0 
< » , s> H, 
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then 

ƒ
» 00 

I K{s,t)\dt < oo, s> H. 

0 

If (7.12) fails, then for some s0>H, 

rh\ i 
lim I I K(s0, t)\ dt = oo , 

and we can choose a sequence Q — hi<hi< • • • of integers such that 

| K(s0, t)\dt^ n, n = 1, 2, • • • . 

If we set, for each n — 1, 2, • • • , 

xo(t) = (1/V) sgn i£(s0, OJ hn S t < hn+i, 

we find, using Lemma 4.1, that xQ e ^o and 

ƒ» Aw+i m \ rhn+l 

K(s0, t)x0(t)dt = Z — I I K(s, t)\dt^ m, 
o n=xX n J h 

m = 1, 2, • • • . 
Hence 

ƒ• / i 

#(so, t)x0(t)dt 
o 

Using again Lemma 4.1, we see that xi = %xQ and x2 = 3x0 are both 
members of ^ ^ o - It then follows from (7.14) that the statement ob­
tained by replacing x0 in (7.14) by one or the other of Xi or Xi must be 
true. This contradicts the hypothesis of Theorem 7.1, and Theorem 
7.1 is accordingly proved. This proof has been so phrased that it 
serves also as a proof of the following theorem. 

THEOREM 7.15. If K is such that K(s, t) is independent of t over each 
interval n^t<n+l, n = 0, 1, 2, • • • , and if 

I /» n 
(7.16) lim sup I K{s,t)x(t)dt 

n—>oo J n 
< » , s> H, 

for each real function x{t) which is constant over each interval n<t<n + l 
and converges to 0 as t—> oo , then 

ƒ. (7.17) | K(s,t)\dt < oo, s> H. 
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THEOREM 7.2. If Kis such that for each x t tRj^o 

(7.21) limsup I K(s,t)x(t)dt 
ft—>oo J o 

< 00 

for s>so(x), where SQ(X) < oo is a real number f or each x t ^A^o, then a 
constant H<<*> exists such that 

ƒ• o o 

| K(s, t) | dt < oo , s> H. 

o 
This theorem would reduce essentially to Theorem 7.1 if it were as­

sumed that a number H< oo exists such that s0(x) <Hîor all x e î ^ o ; 
but this is not assumed and accordingly Theorem 7.2 is essentially 
different from Theorem 7.1. To prove Theorem 7.2, we assume that 
the conclusion fails and obtain a contradiction of the hypothesis. 
Since 

h 

| K(s, t) | dt ƒ 
J o 

exists for h, s>0, failure of the conclusion implies existence of a se­
quence 0 < S i < s 2 < s s < • • • such that sn-+ 00 and 

(7 ƒ» 00 r% h 

\ K(sn, t) \ dt = lim I I K(sn, t) J dt = 00, » = 1 , 2 , 
0 h—><» J 0 Let &o = 0 and choose h\ such that 

. hi 

1 I K(sh t) I dt > 2. 
h0 

Next, choose h2>hi+l such that 

fc2 

ƒ 
J h-

K(sP)t)\dt > 22, p= 1,2. 

When the h0, hi, • • • , hn-\ are determined, choose hn>hn-i+l such 
tha t 

(7.24) f n I K(sp, t) I dt > 2\ p = 1, 2, • • • , ». 

Let «i, «2, • • • denote in order the integers in the sequence 

1 , 1 , 2 , 1 , 2 , 3 , 1 , 2 , 3 , 4 , - • • , 1, 2, • • • , m, • • • . 

Since an^n for each w = 1, 2, • • • , it follows from (7.24) that 
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(7.25) f n | K(san, t)\dt>2\ n = 1, 2, • • • . 
J K-i 

Let xQ(t) be defined over 0 ^ / < cc by the formulas 

(7.26) x0(f) = tr1 sgn Z(s«n, *), K-i S t < hn. 

Then, by Theorem 4.1, x0 £^C and (7.26) implies further that #o ê Co-
Now let g be a positive integer, and let 

K(st, t)x0(t)dt. 
o 

For each of the infinite set of values of n for which <xn = q, we can use 
(7.27), (7.26) and (7.25) to obtain 

F,(K) ~ Fq(K^) = f " K(san, f)Xo(t)dt 

n J . 

An 

iT(5«n, 0 I * > ^ _ 1 2 n . 

Therefore, 

I 2r(5fl, t)x0(t)dt 
J o 

for each g = 1, 2, 3, • • • . If we let Xi = cE(xo, X2 = 3#o, then xi, xi e ^ b y 
Theorem 4.1 and hence Xij X2 e ^i^o. Moreover, if x0 is replaced in 
(7.28) by one or the other (perhaps either) of the functions xi and x2l 

then (7.28) must hold for an infinite set of values of q. Since sq—>°o, 
this contradicts the hypothesis of Theorem 7.2, and the proof of 
Theorem 7.2 is complete. 

THEOREM 7.3. LetH^O be fixed. If 

ƒ
> o o 

| K(s,t)\dt < oo, s> H, 

o 
then 

ƒ» 00 

K(s, t)x(t)dt, s> H, 
o 

exists for each x £ K^ such that lim sup | x(t) | < oo, 

Let x £ ^ , lim sup \x(t)\ < oo, and choose C and / 0 > 0 such that 
\x(t)\ < C w h e n t>tQ. Let 5 > H b e fixed. Then, since x t ^ it follows 
that F(h) =f*K(s, t)x{t)dt exists for each h>0, and if q>p>h then 
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| F(q) - F(p) \ = \ f "K(S, t)x(t)dt £ C f * | K(s, t) \ dt. 

This inequality and the Cauchy criterion for convergence imply ex­
istence of y(s) =l im F(h), and Theorem 7.3 is proved. 

THEOREM 7.4. Let H^O be fixed. If K is such that for each x t ^A^o 

ƒ• 00 

K(s, t)x(t)dt, s> H, 

o 
exists and has the property 

(7.42) l.u.b. | y(s)\ < oo, 
s>H 

then there is a constant ikf < <x> such that 

ƒ» 00 

I K{s,t)\dt = M. 
o 

THEOREM 7.5. If K is such that, for each x e ^Aj), 

ƒ
» 00 

K(s, t)x{t)dt 
o 

exists f or s^so(x), where s0(x) < oo is a real number for each x e %Kjs, 
and has the property 

(7.52) limsup | y(s) | < oo , 
s—•» 

then there is a constant M < co such that 

ƒ
» 00 

I K(sy t)\dt = M. 
o 

We first prove Theorem 7.4. The hypothesis and Theorem 7.1 im­
ply tha t 

ƒ> 00 

I K(s, t) | dt < oo , s > H. 

o 
Also, since ^K^BQI) is a subclass of ^ ^ o , it follows from our hypothesis 
and Theorem 6.1 that for each h>0 there is a constant M(h) such 
tha t 
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ƒ• h 

I K(s,t)\ dt = Af (A). 
o 

Assuming tha t (7.43) fails, that is, that 

| K(s, t)\dt = oo , 
o 

we construct a function x t 'Rjt^o for which (7.42) fails. From (7.62) 
and (7.63), it follows tha t 

ƒ
» 00 

I K(s,t)\dt ==oo, h ^ 0. 

Let h0 = 0 and ilf(Ao) = 0 . It follows from (7.64) that we can choose 
5 i> i J such that the inequality 

ƒ• oo 

| K(sn,t)\dt>4»[2 + M(k»-1)] 

will hold when n — 1, and then choose hi so that hi>h0+l and 

f n \K(sn9t)\dt>4»[2 + M(k^i)], 

(7.66) 

f | #(s„, 0 I * < 2— 

hold when w = l. We continue in this way to obtain sequences 
si, s2, - * • and Ai<A2< • • • , such that sn>H, hn+i>hn+l and (7.66) 
holds for each w = l, 2, 3, • • • . Now let x0(t) be defined by 

(7.67) xQ(t) = 2~n sgn K(sn, t), An_i ^ t < An, 

in which w takes on values 1, 2, • • • . Then x0 c i ^ b y Lemma 4.1; and 
obviously |#o(0| = 1 and #o(0"~»0, so that x0 e^o- Hence (7.61) and 
Theorem 7.3 imply that the transform yo(s) of x0(s) exists. The in­
equalities 

f n K(sn, t)xQ(t)dt = 2~- f n | £(*„, 0 | * > 2»[2 + M(An_x)], 

f " lK(sn, t)xQ(t)dt \S ( nl\ K(sn, t)\dtS M(hn-i), 
\ J o I J o 

ƒ• oo I • » oo 

K(sn, t)x0(t)dt g I | £(>„, 0 | A g 2-" 
h„ I «^ ft„ 
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imply that 

| y0(sn) | > 2»[2 + M(h^i)]- M(hn^) - 2"» > 2\ 

and hence 

(7.68) lim | yo(sn) | = oo . 
n—>oo 

Thus y0 does not have a bounded transform. It follows that at least 
one of the two real functions ^ x 0 and 3#0 (which are both members 
of 2 ^ o and have transforms) must fail to have a bounded transform 
and Theorem 7.4 is proved. 

The proof of Theorem 7.5 is the same as that of Theorem 7.4 ex­
cept that Theorem 7.2 is used to obtain (7.61), and that in (7.62), 
(7.63), and (7.64), "l.u.b.s>#" is replaced by "lim sup8_*oo" so that we 
can choose the sequence Si, ^2, • • • such that sn+^>sn+l and obtain 
a contradiction of (7.52). 

8. Application of K to functions x t F^B. Let S^B denote the class of 
functions x(i) eS^ which are bounded over 0 < / < 00. In this section, 
we give two closely related theorems. 

THEOREM 8.1. If K is such that 

ƒ> 00 

I K(s9t)\ dt < 00 , s > 0, 
0 

and 

ƒ
> o o 

I K(s, t)\dt = A, 
- - h 

then {whether A is finite or + 00 ) there is a function x t K^B such that 

(8.13) I %{t)\ g 1, * è 0, 

and the transform y(s) of x(t) exists for s>0 and has the property 

(8.14) l.u.b. I y(u) - y(v)\ è 2A. 
u,v>0 

Moreover if K(s, t) is real, the f unction x(t) may be taken real. 

THEOREM 8.2. If K is such that 

ƒ1 0 0 

I K(s,t)\dt< 00, s > 0, 
0 

and 
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ƒ» 00 

I K(s,t)\ dt = A, 
h 

then {where A is finite or + oo ) there is a function x ZK^B such that 

(8.23) | x(i)\ g 1, / ^ 0, 

and the transform y(s) of x(t) exists and has the property 

(8.24) lim sup | y(u) - y(v) | ^ 2A. 
U,V->00 

Moreover if K(s, t) is real, the function x{t) may be taken real. 

We first prove Theorem 8.1. The case A = 0 is trivial. If A = + oo, 
the left member of (7.43), with H=0, will be + oo ; hence, by Theo­
rem 7.4, x e ^ ^ o exists such tha t (7.42) fails. But (8.11) implies that 
the transform y(s) of x(t) exists; hence l.u.b. | y(s) | = + oo and (8.14) 
follows. We consider now the remaining case in which 0 < A < oo. 

The hypothesis (8.12) implies tha t we can choose h±>0 such that 

(8.31) A < l.u.b. f \K(s,t)\dt<A + — 
n s>o J hn n 

will hold when n=l, and then choose Si>0 such that 

(8.32) A < f | K(sn, f)\dt<A + — 
* J K n 

holds when n = l. Next we can choose fe>^i+l such that 

(8.33) f \K{sn,t)\dt < — 
J hn + l » 

holds when » = 1, and (8.31) holds when n = 2, and then choose s2>0 
such that (8.32) holds when n = 2. We can continue by induction to 
define sequences hn and sn such that hn+i>hn+l, sn>0, and (8.31), 
(8.32), and (8.33) hold for each n = l, 2, • • • . From (8.32) and (S.33) 
we obtain 

(8.34) A < | K(sn, t)\dt<A + —> n = 1, 2, • • • . 
n J hn n 

Let x(t) = 0 when 0^t<hi; and for each w = l, 2, • • • let 

(8.35) x{t) = crn sgn K(sn, t), hn ^ t < hn+i, 

where each <rn is one of the numbers + 1 or — 1 to be determined pres-
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ently. Then however we determine the crw, | x(t) | ^ 1 ; x e ^ b y Lemma 
4.1; and our hypothesis and Theorem 7.3 imply that the transform 
y(s) of x(t) exists. For each n = 1, 2, • • • we find 

(8.36) y(sn) = An + ank + Rn, 

where 

(8 

and 

K(sn, i)x(t)dt = I K(sn, t)x(t)dt, 
o J hi 

r /• hn+l "I /» oo 
(8.38) Rn = <rn\ I | K(sn, t) \ dt - A + £(*«, t)x(t)dt. 

LJhn J J K+1 

Using (8.31), we find 

ƒ» 00 

\K(sn,t)\dt< A + l , 

and using (8.34) and (8.33) we find 

(8.41) lim Rn = 0. 

If we set Bn=%An and Cn=%Rny then 

(8.42) ^ ( s n ) = Bn + anA + C». 

If we set 

(8.43) Xn = Bn + anA, 

then (8.41), (8.42), (8.43), and the definitions of Bn and Cn imply that 

l.u.b. | y(u) - y(v) | ^ lim sup | y(sm) - y(sn) | 

(8.44) è lim sup | <Rj(sm) - îty(s„) | 
m,n—> oo 

= lim sup | Xm — Xn |. 
w,n—><» 

Accordingly it is sufficient to determine the <rn = ± 1 so that 

(8.45) lim sup | Xm - Xn | ^ 2A. 

The definition of -4n shows that^4i = 0 and hence Bi = %Ax = 0, and 
that for each w = l, 2, • • • the constants cri, (72, • • • , <rn determine 
An+i and hence Bn+i = %An+1. Moreover (8.39) and the definition 
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Bn — %An imply that , however the <rn are defined, the inequalities 

(8.46) - (A + 1) < Bn < A + 1, * = 1, 2, • • • , 

must hold. 
We now indicate, by giving one step, how it is possible to define the 

an by induction to obtain (8.45). Suppose an has been defined for 
n<np and accordingly Bn is determined for n^np, p and np being 
positive integers. To simplify typography, let q — np. Let the interval 
— ( A + 1 ) ^ < ( A + 1 ) in which all points Bn must lie be divided into p 
equal subintervals 7i, 72, • • • , Ip, each closed on the left and open on 
the right. Let I(1) denote the subinterval containing Bq. Let <rq~\, 
and let 7(2) benote the subinterval containing Bq+\. If / ( 2 ) ^ / ( 1 ) , let 
<rq+i = ly but if 7<2) = / ( 1 ) , let <rq+i= - 1 ; and then let 7(3) denote the 
subinterval containing Bq+2. If 7(3) differs from both J(1) and / ( 2 ) , let 
aq+2 = 1 ; otherwise let <rq+2 = — 1. We continue in this manner to define 
an for np^n<np+i where np+i = np+p+l. Since the number (p+1) 
of points Bn is greater than the number p of subintervals, there must 
be two indices a and |8 with pn1=koi,<ft<pn+i such that 

(8.47) \Ba- Bf>\ < 2 ( A + l ) / f , 

and <Ta — + 1 , <Tp = — 1, so that 

(8.48) Xa = Ba + A, Xp^Bp-A. 

The two inequalities (8.47) and (8.48) imply 

(8.49) Xa - Xfi > 2A - 2(A + \)/p. 

The indices a and j8 in (8.49) depend upon >̂, and as p becomes infi­
nite, so also do a and j8. Hence (8.49) implies (8.45) and therefore 
(8.14). Finally if K(s, i) is real, the function x(t) which we constructed 
is real and Theorem 8.1 is proved. 

From (8.44) and (8.45), we obtain 

(8.51) l.u.b. | <Ry(u) - <Hy(v) \ ^ 2A; 
U,9>0 

hence we have proved the stronger theorem obtained by replacing 
(8.14) by (8.51) in Theorem 8.1. However this extension follows from 
Theorem 8.1 itself. For if x{t) is a function of the required type whose 
transform satisfies (8.13), then we can choose a real angle 6 such that 
x(t)eid will be a function of the required type whose transform satis­
fies (8.51). 

We turn now to proof of Theorem 8.2. The case A = 0 is trivial, and 
the case A = oo is covered by Theorem 7.5. In case 0 <A < oo, the hy-
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pothesis (8.22) enables us to choose a number N>0 such that 

ƒ 00 

| K(s,t)\ dt < A + 1, h,s^N. 

We can then choose sequences N < hi < h% < • • • and N < Si < $2 < * • • 
such that s n + i > s n + l , A n + i>A n +l , the estimate obtained by replac­
ing "l.u.b." by "lim sup" in (8.31) holds, and (8.32) and (8.33) hold. 
The proof is then precisely like that of Theorem 8.1 except that 
(8.39) is implied by (8.52) rather than the analogue of (8.22), and 
that "l.u.b.w,v>0" is replaced by "lim s u p ^ ^ * " in (8.44). We thus 
obtain (8.24) and Theorem 8.2 is proved. 

THEOREM 8.6. If C is a nonnegative constant, then a necessary and 
sufficient condition that 

(8.61) l.u.b. | y(s) | S C l.u.b. | x(s)\, x e i£ , 

is that 

ƒi oo 

| K(s, t)\dtS C. 
o 

Necessity is obtained by consideration of the different functions 
x(t) =sgn K(s, t) obtained by giving different values to s, and suffi­
ciency is easily established. 

9. Conditions that K be conservative, conservative for null se­
quences, multiplicative, regular, regular for null sequences, coercive, 
and null. A transformation K is called conservative (convergence-pre­
serving) over a class C of functions if x t C and existence of lim x(t) im­
ply existence of y(s) for s>0 and of lim y(s). Equality of lim y(s) and 
lim x(t) is neither required nor prohibited by this definition. If K is 
conservative over t^, then K is called conservative. In the next theo­
rem, we use the phrase "conservative over ^ rather than "conserva­
tive" in order to facilitate statements of closely related theorems. 

THEOREM 9.1. Necessary and sufficient conditions that K be con­
servative over Ki are 

ƒ
» oo 

| K(s, t)\dt < oo , s > 0, 

o 

ƒ» oo 

| K(s, t)\dt = M < » , 
o 
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(9.13) lim I K(s, t)x{t)dt = Lh(x), h > 0, x e i£ , 
s—»oo %) o 

ƒ
» CO 

J?(s, t)dt = p, 
0 

where M and p are constants, and Lh(x) is a constant for each choice of 
h>0txt^ 

Necessity of (9.11) and (9.12) follow respectively from Theorems 
7.1 and 7.5. To prove necessity of (9.13), let x e ^ , let h>0 and let 
x0(t) =x(t) or 0 according as Q^t^hor t>h. Since x0 e ^ a n d x0(/)-^0, 
our hypotheses imply that the transform 

ƒ
» oo /» h 

K(s,t)xQ (t)dt = I K(s, t)x(t)dt 
o J o 

must converge to some limit [which we may denote by Lh(x)] as 
s—>oo. Necessity of (9.14) results from the fact that the transform 
of the function x(t) = 1 must converge as s—>oo. 

To prove sufficiency, let x t ^ be such tha t lim^00x(/)=X exists. 
Let €>0. Choose h>0 such that 

| x(t) - X| < e, / è A. 

Then Theorem 7.3 implies tha t y(s) exists for s > 0 , and we can use the 
estimate 

ƒ
* h s* h 

K(u, t) [x(t) - X ] * - I K(v, t) [x(t) - \]dt 
0 « ^ 0 

ƒ• oo 

| K(u, t) | | x(t) -\\dt 
h 

ƒ» 00 

I K(v, t) | | x(t) -\\dt 
h 

I r% oo (* oo 

I K{u,t)dt- I K(v,t)dt 
Jo J o 

and our hypotheses to obtain lim sup*,,,-»! ̂ (^) — y(v) \ ^2eM. There­
fore limu,v-+oo\y(u)—y(v)\ = 0 , and the Cauchy criterion for conver­
gence implies existence of lim8 ^^yÇs). 

The theorems used in the proof of Theorem 9.1 are sufficiently gen­
eral to enable us to replace E^ successively by ^ ^ , K^B and %K^B in 
the proof of Theorem 9.1 to obtain 
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THEOREM 9.16. Theorem 9.1 remains true when R^ is replaced by î ^ 
or by f^B or by ^K^B in its statement. 

THEOREM 9.17. The conditions (9.11), (9.12), and (9.13) are neces­
sary and sufficient that K be conservative over the class of null f unctions 
inE^ (that is, functions x zK^for which lim x(t) = 0). 

Proof of Theorem 9.17 is the same as that of Theorem 9.1 except 
that necessity of (9.14) need not be proved and that the condition 
(9.14) is not needed to establish existence of lim y(s) when lim x(t) =X 
= 0. Replacing E^ by ^J^ or t^o or ^Aj) gives characterizations of 
transformations conservative over the classes of real null functions 
in K^ or bounded null functions in ^ or real bounded null functions 

If K is conservative over C and such that for convergent functions 
x e C the value of lim y(s) is independent of the value of x(t) on each 
interval 0 ^ / ^ A , then K is called multiplicative over C. If K is multi­
plicative o v e r ^ , then K is multiplicative. 

THEOREM 9.2. Necessary and sufficient conditions that K be multi­
plicative over K^ are 

ƒ» 00 

I K(s,t)\dt < oo, s > 0 , 
0 

ƒ> oo 

| K(s, t)\dt = M < oo , 
o 

ƒ• h 

K(s} t)x(t)dt = 0, h > 0, x zKi, 

o 

ƒ» 00 

K(s, i)dt = p. 
0 

Moreover if Kis multiplicative, x t ^ and lim x(t) = X, then x is summa-
ble K to pX. 

The number p given by (9.24) is called the multiplier of the trans­
formation. Necessity of (9.21), (9.22), and (9.24) follows from Theo­
rem 9.1. To prove necessity of (9.23), let x e i l a n d h>0 be fixed. Let 
xi(t)=x(t) or 0 according as O^t^h or t>h, and let #2(0=0. Since 
K is multiplicative, the transforms yi(s) and y2(s) of x± and #2 must 
have the same limit; hence 

yi(s) - y*{s) = f K(s, t)x(t)dt 
J 0 
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must converge to 0 as s—>oo and proof of necessity is complete. To 
prove sufficiency, let x{t) e ^ a n d let \imt-«>x{t) =X. Let e>0 . If h>0 
is such that \x(t) — X| < e for t^h, then the equality 

ƒ» 00 

K(s,t)[x(t) - \]dt, 
h 

where 

A(s) = XJ f K(s, t)dt - p i , B(s) = f K(s, t)[x(t) - \]dt, 

implies 

ƒ
00 

I K(s, t)\dt, 
h 

and we can use our hypotheses to obtain lim sup^oo| y(s) — pX| ^ eM. 
Therefore l i m ^ o ^ s ) =pX, that is, x(t) is summable to pX. Since pX 
is independent of the values of x(t) over each finite interval (0, A), the 
theorem is proved. Replacing K^ by 2 ^ , K^B, 'RJCB in this proof gives 

THEOREM 9.25. Theorem 9.2 remains true whenK^is replaced by %J^ 
or by K^B or by 'RJ^B in its statement. 

We now prove Theorem 5.1 and related theorems. Let K be regular 
over C, where C is one of the classes K^ or «2^ or E^B or %K^B. Then the 
definitions of regular and multiplicative transformations imply that 
K is multiplicative over C. Hence by Theorems 9.2 and 9.25 the func­
tion x0(t) s= 1 is summable K to p. Regularity of K over C implies that 
p = lim xo(/) = l. On the other hand Theorems 9.2 and 9.25 imply 
that if K is multplicative over C and p = 1, then K is regular over C. 
Thus the class of transformations regular over C is identical with the 
class of transformations multiplicative over C with multiplier p = l. 
This fact and Theorems 9.2 and 9.25 prove Theorem 5.1 and the 
following one. 

THEOREM 9.3. Theorem 5.1 remains true when K^is replaced by (RjQ 
(the class of real functions in i Q or by K^B (the class of bounded func­
tions in IQ or by (RJ^B (the class of real bounded functions in IQ in its 
statement. 

Methods of proof already used in this section suffice to prove the 
following two theorems. 

THEOREM 9.4. In order that K be regular over the class of null func­
tions in ^ , it is necessary and sufficient that 
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ƒ» 00 

| K(s,t)\dt < oo, 5 > 0, 
0 

ƒi oo 

| K(s, t)\dt < oo , 
o 

(9.43) lim J K(s, t)x{t)dt = 0, h > 0, x e ^ \ 
S—>oo «/ 0 

THEOREM 9.44. Theorem 9.4 remains true when i^ is replaced by ^ ^ 
ar ^ 5 0r %1^B in its statement. 

A transformation K is called coercive if each # e iÇ^ (that is, each 
bounded function x e E^) is summable X. 

THEOREM 9.5. Necessary and sufficient conditions that K be coercive 
are 

/

» 00 

I K(s,t)\dt < oo, s > 0 , 
0 

(9.52) lim I 2H>, /)*(/)<» = Lh(x)9 h > 0, x £ ^ > , 
5—>oo «/ 0 

ƒ» oo 

| X(5, t)\dt = 0. 

Necessity of (9.51) and (9.52) follows from Theorem 9.15 and the 
fact that each coercive transformation is conservative over B^B- Nec­
essity of (9.53) follows from Theorem 8.2; for, if the left member of 
(9.53) is A > 0 , then there is a function x tf^B for which (8.24) holds, 
and therefore x is not summable K. To establish sufficiency, let x c ^ 
be such tha t l.u.b. \x(t)\ <X<oo . L e t e > 0 . Choose h>Q and So>0 
such tha t 

ƒ• 0 0 

I K(s,t)\ dt < e/2X, s ^ sQ. 
h 

The hypothesis (9.51) guarantees that the transform y(s) of x(t) ex­
ists. Hence 

I y(u) - yiv) | è | F(u) - F(v) | + | G(u) \ + \ G(v) | , u} v > 0, 

where 

ƒ• h / » 00 

K(s, t)x(t)dt, G(s) = K(s, t)x(t)dt. 
0 J h 

Our hypotheses and inequalities imply that | F(u) — F(v) | —>0 as u, 
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v—><*> ,and that G(s) < e/2 when 5^5o. Hence limsup |^(w)—3/(v)| è € 
and existence of lim y(s) follows. 

If K is coercive and such that for each x ZK^B the value of lim y(s) 
is independent of the value of x(t) on each finite interval O^t^h, 
then k is called null. 

THEOREM 9.6. Necessary and sufficient conditions that K be null are 

ƒ• o o 

| K(s,t)\dt < oo, s > 0, 
0 

ƒ» h 

K(s, t)x{t)dt = 0, h > 0, x £ ^ B , 

o 

ƒ• o o 

| K(s, t)\dt = 0. 
h 

Moreover if Kis null, then each x ZK^B is summable K to 0. 

Necessity follows from the fact that each null transformation is 
both coercive and multiplicative. Sufficiency is easily established by 
proving that each x ZK^B is summable K to 0. 

THEOREM 9.7. Let C be a nonnegative real constant. In order that K 
may be such that the transform y(s) of each x zK^for which lim sup | x(t) \ 
< oo exists and has the property 

(9.71) lim sup | y(s) | ^ C lim sup | x(t) |, 
S—> oo t—+ oo 

it is necessary and sufficient that 

ƒ
> 0 0 

\K(s,t)\dt< oo, s > 0, 
0 

(9.73) lim J K(s9 t)x{t)dt = 0, h> 0, xz^y 
S—>oo J g 

and 

ƒ» 00 

\K(s,t)\dt SC. 
h 

For proof of necessity, the hypotheses imply that K is regular over 
the class of null functions x e i l a n d hence that (9.72) and (9.73) hold. 
Necessity of (9.74) is implied by Theorem 8.2. Sufficiency is easily es­
tablished. Theorem 9.7 remains true when K^ is replaced by J^B-

Each theorem of this section has contained the condition 
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(9.81) I | K(s,t)\ dt < oo, s>0, 
J o 

explicitly, and the condition 

ƒ» 00 

I K(s, t)\dt < oo 
o 

either explicitly or implicitly. Each of these theorems remains true 
when (9.81) is deleted from the set of conditions and the definitions 
of regularity and so on are modified to correspond to the modified 
definition of summability under which x(t) is called summable to L if 

ƒ
» 00 

K(s, t)x{t)dt 
o 

exists for all sufficiently great s [that is, for all s^s0 where s0 may de­
pend upon the particular function x in (9.83)] and lim8^o0y(s)—L.^ 
Proof of necessity for the new theorems is identical with that for the 
old, the theorems of §§7 and 8 having been made sufficiently general 
to make this true. Condition (9.82) implies existence of i J such that 

ƒ
» oo 

| K(s,t)\ dt < oo , s > H, 

o 
and this plays the role of (9.81) in proof of sufficiency for the new 
theorems. 

10. Kernels which are step functions of t for each s\ sequence to 
function transformations; matrix transformations. It was pointed out 
in the introduction that a matrix transformation A can be identified 
with a kernel transformation K whose domain and range are confined 
to the class of (or a subclass of) step functions which are constant 
over each unit interval n^t<n+l, n = 0, 1, 2, • • • . This fact is, of 
course, significant, but it does not imply that from each theorem in­
volving matrix transformations follows ipso facto a corresponding 
theorem involving kernel transformations whose domain and range 
are not restricted to classes of step functions. For example, matrix 
transformations include the identity transformation 

oo 

ys = ]C à;t%t9 S = 0, 1, 2, • • • , 

* This modified definition of "summable" is used in a study of regular transforma­
tions by J. D. Tamarkin, On the notion of regularity of methods of summation of infinite 
series, this Bulletin, vol. 41 (1935), pp. 241-243. 
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in which ôStt is 0 or 1 according as t^s or t = s; but there is no kernel 
transformation 

/

• 0 0 

K(s, t)x(t)dt 
o 

such that y(s) = x(s), 0 < s < o o , for all functions x(s). I t is likewise 
true that theorems involving kernel transformations do not ipso facto 
imply corresponding theorems involving matrix transformations. 

The theorems of §9 involving kernel transformations are not merely 
analogous to, but actually imply, corresponding results for sequence-
to-function transformations and for sequence-to-sequence matrix 
transformations. 

A sequence A0(s), Ai(s), • • • of complex-valued functions defined 
for s>0 determines the sequence-to-function transformation 

00 

(lo.oi) y(*) = E^«(*)*«. s>°> 

which associates with each sequence x0, Xi, • • • for which the series 
converges for s>0 a transform y(s). The transformation (10.01) is 
regular if lim xt — L implies lim y{s) = L, and other definitions are anal­
ogous to those for matrix transformations. Let xt be any sequence of 
complex numbers. Then, assuming tha t ƒ has the properties of §2, 

n n—1 /» k+1 

(10.02) HMs)xt = J2 \ Ak(s)xkdt, n == 0, 1, 2, • • • . 

If we define K(s, t) and x(t) by the formulas (in which k takes values 
0, 1,2, • • • ) 

(10.03) K(s, t) = Ah{s), k£t<k+l, s>0, 

(10.04) x(t) = xt, k ^ / < k + 1, 

then K is a kernel according to the definition of §3, and x z B^. The 
right member of (10.02) can then be written in the forms 

n— 1 •» k+1 r* n 

(10.05) £ J K(s,t)x{t)dt = I K(s,t)x(t)dt. 

Setting, for all integers n ^ 0, all real h ^ 0, and all s > 0, 
n /• h 

F(n, s) = 2i4«(5)»4 , G(A, 5) = I Ç(s, t)x(t)dt, 
<=o •/ 0 

we see that , for each s, G(h, s) is a linear function of h over each closed 
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interval n^h^n+1. Moreover, since F{n, s) = G(n, s), it follows that 
existence of either one of 

(10.06) yW>(5) = ^At(s)xt = lim ! > < ( * ) %t 

or 

ƒ
• oo • » h 

K(sf i)x{t)dt = lim I K(s, t)x(t)dt 
0 ft-»oo J o 

implies existence of the other and the equality y(A)(s) =yiK)(s). 
Leaving consideration of other properties to the reader, we discuss 

regularity. I t is clear from the above discussion of (10.06) and (10.07) 
that , if K is regular, and hence also regular over the class i^ ' of step 
functions x(t) constant over each interval n^t<n + l, then (10.07) is 
regular; and it is also clear that if (10.07) is regular, then K is regular 
over E^. Hence the first of the two next theorems is implied by the 
second. 

THEOREM 10.1. The sequence-to-function transformation 

00 

(10.11) y(s) = ^A,(s)xt, s>0, 

is regular if and only if the step kernel defined by (10.03) is regular. 

THEOREM 10.2. If K is a step kernel, K(s, t) being independent of 
t over each interval nSt<n+l, and if K is regular over the class IÇJ of 
step f unctions constant over each interval n^t<n+l, then K is regular. 

To show that K is regular, let X o £ ^ and lim xo(t) =L. We are to 
show that 

/

» oo 

K(s, t)x0(t)dt, s > 0, 

o 
exists and lim y0(s)=L. Our hypothesis implies, by Theorem 7.15, 
tha t 

ƒ» 00 

I K(s,t)\dt < oo, s > 0, 

o 
and existence of (10.21) follows. Let An(s) denote the value of K(s, t) 
in the interval n^t<n + l. The hypothesis x0 e ^ i m p l i e s that x(t) is 
integrable over each interval n^t^n+1 corresponding to an integer 
n such that An^^O for some s>0; the condition Xo t K^ implies no 
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condition whatever on xo(t) in an interval in which An(s)=0 for all 
5>0 , since, in this case, 

(10 ƒ
» n + l /» n + l 

K(s} i)x0(t)dt = I An(s)xo(t)dt = 0, 
n J n however x0(t) is defined. Let Xi(t) = x0(t) in each interval n^t<n + l 

over which x0(t) is integrable, and let X\(t) =L for all other t^O. Then 
Xi e ^ a n d lim xi(t) =L. Let 

ƒ» n + l 

X!(u)duy n ^ / < n + 1, n = 0, 1, • : • . 
n 

Then x2 e i^ ' and x^-^L. Starting with (10.21), we can show that 

m— 1 •» n + l ra—-1 •» w+1 

y0(s) = lim X) I K{s,t)x^{t)dt = lim ] £ f -4n(s)»0(0* 

m—l /» n + l m— 1 

(10.25) = lim X) I 4 » ( s ) * i ( 0 * = lim ]£4»(s)*2(tt) 

m—l /» n + l A» oo 

= lim YJ I i4w(5)^2(0* =: I -K"(5, t)x2(t)dt. 
m-»oo n=a=o «^ n ^ 0 

But since #2 e KJ and X is regular over Kj, it follows that the last 
member of (10.25), and hence yo(s), converges to L as s—^oo. This 
proves Theorem 10.2 and hence also Theorem 10.1. 

THEOREM 10.3. Necessary and sufficient conditions that the sequence-
to-function transformation 

00 

y(s) = iLA^xt 

00 

J^\At(s)\ < oo, s > 0, 

00 

lim sup JD | A t(s) | = M < oo , s > 0, 

lim At(s) = 0, 5 = 0, 1, 2, • • • , 

00 

(10.35) lim ^At(s) = 1. 

be regular 

(10.32) 

(10.33) 

(10.34) 

are 
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When K is the step kernel given by (10.03), the four criteria (5.11), 
(5.12), (5.13), and (5.14) for regularity of K are easily shown to be 
equivalent respectively to (10.32), (10.33), (10.34), and (10.35). 
Hence Theorem 10.3 is implied by Theorems 5.1 and 10.1. 

It is often stated that the set of conditions consisting of 
oo 

(10.36) £ I Ms) I < M < <*>, s > 0, 

(10.34) and (10.35) is necessary and sufficient for regularity of 
(10.31); this statement is false since the transformation 

y(s) = xo, s = 0, 

= (1/S)XQ + x[8], s > 0, 

is regular and fails to satisfy (10.36). On one hand, (10.36), (10.34), 
and (10.35) are sufficient for regularity, since (10.36) implies (10.32) 
and (10.33). On the other hand, the error in assuming that they are 
also necessary for regularity does not usually lead to false results on 
account of the fact that if 

00 

y(s) = 2 At(s)xt9 s > 0, 

is a regular transformation which fails to satisfy (10.36), then there 
is a constant i ? > 0 such that the transformation 

00 

y(s) = JL At(s)xt, s > H, 

satisfies the condition 
oo 

EM«W| < M < «>, s> H, 

which is analogous to (10.36). 
If A8tt is a matrix of complex constants, and we define functions 

At(s) by the formulas 

At(s) = A n , t 9 n ^ s < n + 1; n = 0, 1, • • • , 

it becomes apparent that the matrix transformation 
oo 

(10.37) y8= J^AsjXt 

is regular if and only if (10.31) is regular. Hence, using Theorem 10.3, 
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we see that necessary and sufficient conditions for regularity of ma­
trix transformations are those stated at the beginning of §5. 

Conditions that (10.31) and (10.37) be regular over other classes 
of sequences (for example, null sequences) are obtained by slight al­
teration of a few parts of this section. 

11. Scope of regular transformations. Steinhaus* proved that no 
regular matrix A exists which evaluates all bounded sequences xt. The 
following theorem extends this result to kernel transformations. 

THEOREM 11.1. If Kis a regular transformation, then there is a func­
tion x zE^for which \ x(t) | ^ 1 while the transform y(s) has the property 

(11.11) lim sup | y(u) — y(v)\ ^ 2. 
u,v—>*> 

This theorem is an immediate result of Theorems 5.2 and 8.2. 

THEOREM 11.2. ƒƒ, under a given definition of integral having the 
properties listed in §2, x(t) is a bounded function which is integrable 
over each finite interval O^t^h, then there is a regular transformation K 
involving the given definition of integral such that x(t) is summable K. 

The manner in which we construct a regular transformation which 
evaluates x(t) indicates that many such transformations can be con­
structed. The hypotheses of Theorem 10.2 imply that the sequence 
JS(0), JS(1), • • • of complex numbers defined by 

ƒ» n + l 

x(t)dt, n = 0, 1, 2, • • • , 
n 

is bounded. Hence there is a sequence 0 = ni<n2< • • • of indices 
such that lim^oojs^p) exists. The transformation 

x(t)dt, np g s < np+i, 
•H 

is obviously regular and evaluates x(t) to lim z(np). 
Theorems 11.1 and 11.2 indicate that the fitting of regular trans­

formations to functions is like the fitting of shoes to men. No one pair 
of shoes will fit all men ; but any man can obtain from a shoemaker 
many different styles of shoes which will fit him. 

12. Conclusion. Let E and £ be point sets, and let integration be 
so defined that for at least some complex-valued functions ƒ (t) defined 

* H. Steinhaus, Some remarks on the generalizations of the notion of limit (in Polish), 
Prace Matematyczno-Fizyczne, vol. 22 (1921), pp. 121-134. 



*939\ GENERALIZED DEFINITIONS OF LIMIT 729 

for t e JE, the symbol 

(12.1) ( f(t)dt 
J B 

represents a complex number corresponding to ƒ. There is now the 
possibility that if the integral has appropriate properties, and if 
K(s, t) is an appropriate complex-valued function denned for s e £, 
tzE, then the transformation 

(12.2) y(s) = f K(s, t)x(t)dt, s e £ , 
JE 

is significant. In case the set £ is one (not necessarily in any euclidean 
space or even in a metric space) in which the notion of limit point 
is defined, and s o is a limit point of £, then x(t) may be called sum-
mable (12.2) to L if y(s) exists for s t £ and y(s)—>L as s—>So over £. In 
case to is a limit point of E, the number limSH>8o;y(s) may (when it ex­
ists) be regarded as a generalized limit of x{t) as t-^to over E. The 
transformation (12.2) is regular over a class C of functions if x{t) is 
summable to L whenever x e C and x(t)-^L as /—H0 over E. Other 
properties which (12.2) may have or fail to have can be similarly de­
fined. 

The transformation (12.2) and the associated method of summa-
bility determined by t0 and SQ reduce to the form we have studied 
when £ is the set 0 < s < o o , E is the set 0 < / < o o , and t0 and s0 are 
the symbolic limit points + oo. 

It is apparent that the role of / in the theory of the transformation 
(12.2) lies far deeper than the role of s. In so far as the theory of K 
which we have covered in this address is concerned, the difference 
between K and the transformation 

K(s,t)x(t)dt, s e £ , 
0 

with s—>So instead of s—><x>, is trivial. For example, (12.3) may furnish 
a regular generalization of l im^^x^) when s—>s0 over a set £ which 
is a bounded interval in euclidean space of one dimension, a "curve" 
in a plane, or a non-measurable set in 3-space. 

On the other hand the transformation 

(12.4) y(s) = I K(s, t)x(t)dt, s > 0, 
J E 

in which s0 = + <*>, assumes entirely different forms according to the 
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character of E and to and the definition of integral used. In case E is 
the interval a <t < <*>, where a is a constant not 0, the transformation 
(12.4) differs only in an obvious and trivial way from K. Easy modi­
fications of our theory of K cover some cases in which £ is a curve 
other than the interval a<t< oo in a plane. These examples furnish 
generalizations of lim x(t) as /—>/o over a curve. 

For an example of a different character, let E denote the set of 
points of a plane which are interior to the unit circle with center at 
the origin, and let t0 be a point on the unit circle. For each A>0, let 
JE/I be the set of points interior to the circle with center at to and 
radius h. For each h>0, let 

f f(*)dt 
J E-Eh 

denote the Lebesgue double integral of ƒ over (E—Eh) when the in­
tegral exists, and let 

f f(t)dt = lim f f(t)dt 

when the limit exists. The transformation (12.4) then furnishes a gen­
eralized definition of the limit of x{t) as t-^to over the interior of the 
unit circle. 

I t may be possible to give a theory of (12.2) covering at the same 
time all of the special cases which we have mentioned and many 
others. Such a theory would be more impressive and would have 
wider application than the theory we have given. However the details 
necessary to make the more general theory precise would have made 
our discussion more cumbersome, and might have obscured the real 
purpose of this address. 
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