
TOTALLY GEODESIC EINSTEIN SPACES* 

AARON FIALKOW 

1. Introduction. An Einstein spacef Em is defined as a Riemann 
space Vm whose mean curvature a is a constant at each point; that 
is,J 

(1.1) Ra0 = - agafi 

where Rap and gap are the Ricci and metric tensors of Vmi respectively. 
We suppose that the dimension m of Em exceeds 3. For every surface 
is an E2 and the only E3 's are the spaces of constant curvature. In 
both these cases, the discussion which parallels that given in this 
note is obvious and trivial. Since m > 3, it is a well known conse­
quence of (1.1) that a is a constant throughout the space. In this 
note, we discuss the properties of an Em which admits families of 
totally geodesic subspaces which are also Einstein spaces. I t is shown 
that this subject is closely related to the problems of finding (a) all 
Einstein spaces which may be imbedded as hypersurfaces of a space 
of constant curvature (b) Einstein spaces which are conformai to 
Einstein spaces. In a restricted sense,§ we also find the first funda­
mental form of Em. It is assumed that the first fundamental forms of 
Em and of its subspaces which are discussed below are nonsingular 
although they may be indefinite. 

2. Separable Einstein spaces. It has been shown by Bompiani|| 
that the necessary and sufficient condition that the subspaces xv 

= const, and the orthogonal subspaces xi== const, be totally geodesic 
in Vm is that 

(2.1) gii = ƒ»,•(**), gpq = hpq(x
r), gip = 0. 

When the first fundamental form of Vm satisfies (2.1), it is called 

* Presented to the Society, September 6, 1938. 
f We represent an ra-dimensional Riemann space and Einstein space by Vm and 

Em, respectively. 
X Throughout this note, a, /3, y, 8; h, i, j , k; p, q, r; \, v, P have the ranges 1,2, 

• • • , m; 1, 2, • • • , n; w + 1, w+2 , • • • , m; 1, 2, • • • , n — 1, respectively. An index 
which appears twice in an expression is to be summed over the appropriate range. 
A free index of a tensor equation assumes each value of its range. 

§ The first fundamental form of Em is obtained in a preferred coordinate system 
and depends upon the unknown first fundamental form of an arbitrary Einstein 
space. 

|| E. Bompiani, Spazi Riemanniani luoghi di varietà totalmente geodetiche, Rendi-
conti del Circolo Matematico di Palermo, vol. 48 (1924), p. 124. 
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separable, and the two forms fijdxidxi and hpqdxpdxq are called its 
components. It is clear that the components are the first fundamental 
forms of the totally geodesic Vn's and Fm_n 's of Vm and that the 
Vn

ys (as well as the Vm-n's) are isometric. 
We denote the Christoffel symbols of the first and second kind by 

[a/3, 7 ] , {<*\Py} for Vm; WTk]> {i\Jk} f o r Vn, and [pq, r ] , {p\qr} 
for Vm-n- Then it follows from (2.1) that 

(2.2) [ij,k] = R/T*], {i|i^} = {TjTF}, 

(2.3) [#g, r] = [ ^ 7 ] , {#| gr} = {p\qr} , 

(2.4) [018,7] = 0, {a\fiy} = 0 

if a, ]8, 7 are not all in the same range. The Ricci tensor of Vm is de­
fined as 

d2 log £1/2 d 

(2.5) 
a I02 ?1/2 

whereg=|g«/3|-
We first suppose that n>\ and m — n>l. Then from (2.2), (2.3), 

(2.4), and (2.5), 

(2.6) RiP = 0, jRjj = Rij, Rpq = RPq 

where R^ and Rvq are the Ricci tensors of Vn and Vm-n, respec­
tively. If Vm is an Em, it follows from (1.1), (2.1), and (2.6) that 

(2.7) R^ = — af a, Rvq = — aAPtf. 

Hence Vn and Fm_n are both Einstein spaces of the same mean curva­
ture as Em. Conversely, by reversing the proof we find that (1.1) is 
a consequence of (2.1) and (2.7). This proves the following theorem: 

THEOREM 2.1. Let the first fundamental f or m of an Einstein space of 
dimensionality m>3 of mean curvature a be separable into components 
whose dimensions exceed 1. Then each component is the first fundamental 
form of an Einstein space of mean curvature a. Conversely, only the 
first fundamental forms of Einstein spaces are separable in this manner. 

If m = 4, n = 2, it follows, from this theorem and the observation 
that a two-dimensional space of constant mean curvature has con­
stant Riemann curvature, that each component is the first funda­
mental form of a space of constant curvature a. This was first proved 
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by Kasner.* In recent papers,f we have shown that Einstein spaces 
which are proper hypersurfaces of any space of constant curvature 
are either spaces of constant curvature themselves or are separable. 
By a repeated application of Theorem 2.1, we may obtain an obvious 
generalization which applies to an Em whose first fundamental form 
is separable into more than two components. 

If n>\ and m = n + l, and if (2.1) is satisfied, the curves x* = const. 
are geodesies of Em. In this case, equations (2.6) become 

(2.8) Rim = 0, Rij = Rij, Rmm = 0. 

As a consequence of (1.1), (2.1), and (2.8), we find that ^ , = 0, a = 0, 
and conversely. We have proved the following theorem : 

THEOREM 2.2. A Vn+i which admits oo1 parallel totally geodesic 
En s is an -En+i if and only if the mean curvature of the En's is zero. In 
this case, the mean curvature of £w+i is also zero. 

3. jEn+i with totally geodesic En's. We suppose m = n + l and that 
En+i admits <*> l totally geodesic En's which are not parallel. Since 
the first fundamental form of the necessarily isometric En's is non-
singular, it follows that the normals to the En's in En+i are not null 
vectors. $ Hence, in accordance with a slightly weaker form of the 
theorem of Bompiani quoted above, 

(3.1) gij = fa(xk), gn+i.n+i = eH\x\ y), g*,n+i = 0, 

where y = xn+1, 6 is + 1 or — 1 , and fijdxHx* is the first fundamental 
form of each En. Since the hypersurfaces are not parallel, it follows 
that H(x\ y) cannot be a function of y only but must involve the x\ 
Because of (3.1), we find that (2.2) holds and (2.4) is true if one of 
a, /?, y is n-\-l and the other two lie in the range 1, 2, • • • , n. Also 

( i Ï à log H ( . , d log H 
{n+l\in+l}= — ; {n+ 1 n+ 1 n+ l} = - — ; 

dxl dy 
(3.2) 

(i Ï d log H 
{i\n+ 1 n+ 1} = - eH2 —g<>, 

dx1 

* E. Kasner, An algebraic solution of the Einstein equations, Transactions of this 
Society, vol. 27 (1925), pp. 101-105, and Separable quadratic differential forms and 
Einstein solutions, Proceedings of the National Academy of Sciences, vol. 11 (1925), 
pp. 95-96. 

t A. Fialkow, Einstein spaces in a space of constant curvature, Proceedings of the 
National Academy of Sciences, vol. 24 (1938), pp. 30-34, and Hypersurfaces of a 
space of constant curvature, Annals of Mathematics, (2), vol. 39 (1938), pp. 762-785. 
The term "proper" is defined in these papers. 

î L. P. Eisenhart, Riemannian Geometry, 1926, p. 144. 
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where gij are the contra variant components of gi3\ From (2.2), (2.4), 
(2.5), and (3.2), 

JRn+i.n+i = - '—: {i | n + 1 n + 1} 
dxl 

(3.3) + {n + l\ n + 1 i} {i\ n + 1 n + 1\ 

— {t\ n + 1 n + 1] > 

(3.4) Ri>n+1 - 0, 

(3.5) Ru = 5 „ + (log H)tii + (log ffj.^log #),y, 

where the comma denotes covariant differentiation with respect to 
the form fijdx^x1', and ƒ = \fa\. Since En+1 and £ n are Einstein 
spaces, (1.1) and 

(3.6) Ri3= - bfu 

are true. 
I t follows from (1.1), (3.1), and (3.6) that (3.5) becomes 

(3.7) Htii = cHfa 

where 

(3.8) c = b-a. 

The integrability conditions of (3.7) are 

H,ijk — Htikj — H\hRij-k 

which become, by virtue of (3.7), 
h 

H,hRijk — c(H,kfu ~~ H,jfik)> 

The tensor Rijk is the Riemann curvature tensor of En. If we multi­
ply this equation by the contravariant components / i j of the metric 
tensor of En and sum for i, j , we find after using (3.6) that 

[c(n - 1) + b]H,k = 0. 

Since Htk cannot be zero for every value of k, the last equation and 
(3.8) show that 

(3.9) nb = (n - \)a 

is a necessary condition that (3.7) have a solution. 
Since d log (f)1/2/dx{ = {k\ ki), after using (3.2), equation (3.3) 

becomes 

file:///hRij-k
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Rn+1,n+1 = eH\—{fijHtj + f^Htj{k\li]\ 

or 

(3.10) Rn+i,n+i = eHA2H 

whereA2H=f^Htij. From (3.7), (3.8), (3.9), and (3.10), 

Rn+i,n+i = — aeH2. 

According to (3.1), this equation and (3.4) both obey (1.1). Hence 
En+i will admit <*>1 nonparallel totally geodesic En's if and only if a 
solution of (3.7) exists. 

Since H(x\ y) is not independent of the x\ we may choose co­
ordinates xl so that H = xn for some fixed value of y and such that 
/n\ = 0. Then (3.7) becomes 

- {n \ij) = cxnfn. 

Now Brinkmann* has shown that En admits a solution of these equa­
tions if and only if its metric tensor satisfies 

(3.11) / : = ( - » 2 + <*)->, 
f\m = (cxn + d)FxlJi(x

v), fnX = 0, d' constant, 

and the form F^x^dx^dx11 is the first fundamental form of an En-\* 
According to Brinkmann, (3.11) is the necessary and sufficient condi­
tion that En be conformai to another Einstein space by means of a 
transformation ds = <rds with Aicr^O where Ai<T=fi3'<rti(T,i. If we sup­
pose H = xn for all values of y, using (3.1) we may write the first 
fundamental form of one En+i which satisfies the conditions of the 
problem as 

(3.12) ds2 = fijdx^x3'- + exn2dxn+l2 

where the fa satisfy (3.11). This proves the following theorem: 

THEOREM 3.1. A one-parameter family of isometric En's may be im­
bedded as oo1 nonparallel totally geodesic hyper surfaces of an En+i if 
and only if each En may be mapped conformally on another Einstein 
space by means of a function a with Aio-^O. If a and b are the mean 
curvatures of Ew+i and En, respectively, then nb = (n — l)a. 

We now briefly consider the conditions under which the En de-

* H. W. Brinkmann, Einstein spaces which are mapped conformally on each other, 
Mathematische Annalen, vol. 94 (1925), pp. 123-125. 
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fined by (3.11) admits solutions H(x\ y) of the equations (3.7) other 
than H = xn. By methods similar to those hitherto employed, we find 
that the most general solution for H of the form H=H(xn, y) is 

(3.13) ff = «(?)•*» + 0 ( y ) , c = 0, 

or 

(3.14) H = a(y)'Xn, c ^ 0, 

where a(y) and /3(y) are arbitrary functions of y. We note that the 
En+i obtained by using the H defined by (3.14) coincides with (3.12). 

I t can be shown that solutions for H which involve some of the 
xv do not exist unless the En defined by (3.11) may be mapped con-
formally on another Einstein space in more than one way. Hence, if 
this is not the case, the En's may only be imbedded in the unique 
E n + i defined by (3.12) if c^O and only in the En+is defined by (3.1), 
(3.11), and (3.13) if c = 0. In this last case, a = o = 0. 

BROOKLYN COLLEGE 

CONCERNING THE BOUNDARY OF A COMPLEMENTARY 
DOMAIN OF A CONTINUOUS CURVE* 

F. B. JONES 

Much study by various investigators has been given to the nature 
of the boundary of a complementary domain of a locally compact 
continuous curve in the plane and in certain other spaces, f I t is the 
purpose of this paper to continue this investigation in less restricted 
spaces which satisfy the Jordan curve theorem and to establish cer­
tain results (from which many of the known results follow immedi­
ately) in such a way as to bring out what is essential for their validity. 

I t is first necessary to establish the following lemma. 

LEMMA A. If a locally compact nondegenerate continuous curve M in 
a complete Moore space contains no simple triod, then M is a simple 
continuous curve. % 

* Presented to the Society, December 30, 1938. 
t See the bibliography and Chapter 4 of R. L. Moore's Foundations of Point Set 

Theory, American Mathematical Society Colloquium Publications, vol. 13, New York, 
1932. Hereinafter, this book will be referred to as Foundations, and the reader is 
referred to it for many theorems and the definition of certain terms and phrases used 
in this paper. 

% A complete Moore space is a space satisfying Axioms 0 and 1 of Foundations. A 
simple continuous curve is either a simple continuous arc, a simple closed curve, an 
open curve, or a ray. 


