
A DUALITY FOR CERTAIN DIFFERENCE EQUATIONS 

E. T. BELL 

1. Umbral factorials and Appell polynomials. The difference equa­
tions considered include as special cases those satisfied by the gener­
alized Bernoulli and Euler polynomials,* also many of interest in the 
theory of numbers ; the duality was primarily devised for the investi­
gation of divisibility properties of certain sequences of rational num­
bers obtained from generalizations of the polynomials mentioned. 
The connection with arithmetic is made through Fermat's theorem 
and Lagrange's identical congruence, and is developed elsewhere.f In 
constructing the duality, an inconsistency in the usual statement of 
symbolic equations that has been overlooked by writers on the sym­
bolic methods is uncovered (§1, end). This inconsistency is trivial 
for the customary uses of the symbolic method, but until it is rectified 
it is impossible to proceed to the new applications of the method made 
here. 

The duality is most simply displayed in Blissard's symbolism 
(suitably amplified), in which a is the umbra of the sequence an, 
(n = 0, 1, • • • ), or of the vector (aQ, au • • • ), and the symbolic 
power an denotes an. Small Greek letters without suffixes, a, ce(w), 
]S, /3 (n), • • • , and 5 (w), will be used exclusively for umbrae, small 
Latin letters, with or without suffixes, a, at-, • • • , xy Xi, t, • • • for 
ordinaries (real or complex numbers). Small Greek letters with 
suffixes, as an, a£n\ * * * » denote ordinaries. By definition, xa is the 
umbra of xnany (w = 0, 1, • • • ). Umbral equality, a=j3, signifies 
an=(3n, that is, an=(3nt (n = 0, 1, • • • ). If a^fi, a, /5 are said to be 
distinct. 

Provided the series converges for some | / | >0 , 

exat = 2^ Xnan = 2 ^ , #n<*n 

n=o n\ n\ 

Hence, if a, /3, • • • , y are all distinct, and xy • • • Z9^0f 

gxatgyfit . . . gzyt — £>(#a+2//S+ • • -\-zy)t 

convergence of the umbral exponentials on the left being assumed, 
where (xa+y/3+ • • • +zy)8, (s^O), is to be replaced after expansion 

* N. E. Nörlund, Differenzenrechnung, chap. 6. 
t In a paper on generalized Stirling transforms of sequences to appear in the 
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of the right by its equivalent as given by the umbral multinomial 
theorem, 

(xa + yp + • • • + zy)° = a0p0 • • • To, 

(xa + yp + • • • + zy)8 = ] £ Ma>bt...lCxayb • • • zcaafih • • • ye, s > 0 , 

in which the M's are multinomial coefficients from the ordinary 
multinomial theorem 

(% + y + • • • + z)s = 2 2 ilf «,&,...,c*
a;y& • • • 2C. 

The exponents 0, 1 of umbrae are treated precisely as any other non-
negative exponents, in distinction to the like in a field, where x° = l> 
xl = x. Thus a° = aof ce1 =ai . 

The umbrae 77, co, S(s), 5 ( s ) are special: 
(1) 770 = 1, Vn = 0, ( » > 0 ) ; con = 0, (n^O) ; 
(2) 5<«> is the umbra of ( # \ ôis), • • • ), where ô<s) is a Kronecker 

delta, 8^ = 1, S<s) = 0, (r^s). 
The (ordinary) factorial (/)n is defined by 

(flo = 1, (0„ = S (* - s) = £ S,UV, « > 0, 
5=0 S = l 

where the S^ are the Stirling numbers of the first kind, S£0) = l, 
Sn)==Q> (s>n). If | / | < 1 , there is the known expansion 

(3) [log ( 1 + / ) ] • = *!exp [S<*n], 

in which the nth power {n ^ 0) of S(8) is replaced after expansion by 

For any umbra £ the (umbral) factorial (£)n is defined by 

(4) ft)o s £0, ft)» ^ 5 ft - s) = 22 S n \ , n > 0. 
«==0 8 = 1 

The umbra of (£)w, (w = 0, 1, • • • ), is written (£). If for some | / | > 0 
the series converge, 

(5) (1 + *)« = ««>«, 

where the left is expanded formally by the binomial theorem (as if 
£ were ordinary), the right by the exponential theorem, and £w, 
(£)n are replaced after expansion by £n, (£)n, (n*t0). 

The (ordinary) Appell polynomial An(t, a) in 2 with the base a is 

n 

4„(/, a) s (/ + a)n = 22 (», *Wn"~% » > 0, 
s=0 
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where (n, s) is the binomial coefficient n\/s\(n — s)l. The (umbral) 
Appell polynomial 4 n (£ , OL) in £ with the base a is AQ(^ cO=a0£o, 

n 

(6) An((, a) ss ft + a)* = 2 (»> *)«•&-•> # > 0; 

whence 4(£ , a) = 4 ( a , £). If r is the umbra of (1, /, /2, • • • ), then 
4 ( r , a) =A(t, a). Thus the umbral Appell polynomials generalize the 
ordinary ones. 

Let £ be distinct from a, j8. Umbral derivation, D$, with respect 
to £ is defined by 

Dt<xJin = a ^ ^ n = wam£w_i, w > 0, 

Di-amÇo = 0 , Ds(amÇn + ft.£8) = D^am^n + D$r%8. 

Hence, generalizing the characteristic property of Appell polynomi­
als, we have D^A0(^ a) = 0, 

(7) DsAntt, a) = nAn^ti, a), n > 0. 

We have also, by (1), 

(8) A&r,) = i, ,4(1;, co) = * . 

In the definition of (£) as the umbra of the sequence (£)n, 
(w = 0, 1, • • • ), of umbral factorials constructed from £, £ is arbi­
trary. Hence the umbra of the sequence (4(£, cx))n, (w = 0, 1, • • • ), 
of factorials constructed from -4(£, a) is written (A(!~, a)). In the 
definition (4), £ is any umbra. Hence, replacing £ in (4) by 4(£ , a), 
we have 04(£, «))o = ?o«o, 

(9) (4ft, «))« = È Sl5),48ft, a ) , fi > 0. 

It may be shown from the properties of the Stirling numbers that 

(A&a))n= [ft) + (a)]», f» = 0 , l , . . . ; 

that is, by the definition of umbral equality, we have the second of 
the next two equations, 

(10) 4 ft, a) = £ + a, (4 ft, a)) = ft) + (a), 

the first of which is equivalent to (6). Thus the first of (10) implies 
the second. It can be shown in the same way that the second implies 
the first. 

An implied restriction on ordinary constants occurring in equations 
containing umbrae appears to have been overlooked by writers on 
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the umbral calculus, as its necessity for consistency can be ignored 
until the umbral equations are dualized as in the next section. The 
point is sufficiently evident from an example. Let E be the umbra 
of the Euler numbers. Then one of the usual umbral equations for 
the En is customarily written 

(E + 2)n + En = 2, n = 0, 1, • • • . 

The terms on the left are umbrae, the constant 2 on the right is an 
ordinary, and it is meaningless to equate an umbra to an ordinary, 
although the (meaningless) equation gives correct results in the 
classic applications of the symbolic method. The equation is derived 
from 

sech / = 2el/(e2t + 1) = eEt, 

which may be taken as a definition of E. Proceeding as usual we get 

e(E+2)t _|_ eEt = 2et 

and hence, on equating coefficients of /, 

(E + 2)n + En = 2-1" , 

the correct form, in which 2 appears as 2 • ln . The 1 in l n is the umbra 
of (1°, l1, l2, • • • ), namely of (1, 1, 1, • • • ) ; and it is clear why the 
incorrect equation gives correct results. Generally, if an equation 
involving umbrae contains also an ordinary term c, this term must 
be interpreted as the umbra of (cf cl, cl2, • • • ). Similarly, in £+c , c 
is the umbra of (1, c, c2, • • • ). 

2. Duality. Two relations, each of which implies the other, will be 
called duals. The dual difference equations considered are obtained 
as follows. Let a(r), /3(s), • • • be all the umbrae other than the special 
umbrae S(M), 5 (V) , or umbrae of the type noted at the end of the pre­
ceding section, occurring in the first equation of a pair of duals. Let 
the first equation be between nth powers of umbrae, valid for 
n = 0, 1, • • • . Then passage from the first equation to the second is 
made by the substitution 

a < r ) - » ( a < r > ) , £ 0 0 - > ( 0 0 0 ) , . . . 9 

and, if one or more of ô(w), S(v\ can occurs, by the corresponding sub­

stitutions from among 

Passage from the second equation to the first is made by the inverse 
substitutions 
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(«<'>)->«<'>, G8<.>)_*0<.>, . . . , 
5 ( W ) _ ^ 5 ( W ) ? 8Xv)=S(v)f c(a)n^cant 

For example, E being as in §1, end, we have the duals 

(E + 2)n + En = 2-1" , 

[(£) + ( 2 ) ] » + ( £ ) » = 2(l)n , f » è O . 

Now (c)o = l, Wn = c ( c -1 ) • • • ( c - w + 1), ( » > 0 ) . Hence (2)0 = 1, 
(2)i = (2)i = 2; (2)n = 0, ( » > 2 ) ; (l)o = l, (1)» = 0, ( » > 1 ) ; and since 

[(E) + ( 2 ) ] - = Ê ( * , * ) ( E ) M ( 2 ) . , 
5=0 

the above duals in expanded form are 

n 

£ 0 = 1 , En+'£l2>-->(n,s)En-a= I, n > 0; 
8=1 

(E)0 = 1, 2(E)n+2 + 2(fi + 2)(E)n+1 + (» + 1)(» + 2)(E)n = 0, n ^ 0. 

The solution of the last is (E)n = n\an, (w^O), where 

a 4 n=( - l ) w 2- 2 n , a4n+1 = 0, a4 n +2=(~l)w + 12-2 w-1 , a4n+3 = ( - l ) n 2 - 2 w - 1 . 

With the definitions 0° = (0)o = l, we have also the duals 

( E + l)n+ ( E - 1)» = 2-0", 

[(E) + (1)]- + [(E) + ( - 1)]- = 2(0)n, » ^ 0. 

3. Duals. We shall give one pair, (IS), (150, of duals of a very gen­
eral character. Proofs are deferred for the moment. 

The 77, co, ô(n), S(n) have the special meanings assigned in §1; 
h, i, j , k are nonnegative integers ranging, respectively, from 0 to /, 
0 to m, 0 to n, 0 to r; Lhy Miy iV/, Rk are any given ordinary constants, 
X(*\ ju(i), vu\ p(k) any given umbrae such that 

(11) Nr^+JlRupF^O. 

It follows that the d„, (« = 0, 1, • • • ), given by 

T,j\Ni[e + AO>M, ««>)]« + J2 Mo + p(k)]a 

(i2) ~ 7 

&»0 t'=0 
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for u = 0, 1, • • • , are determinate when, by convention, the binomial 
coefficient (0, 0) = 1, (0, s ) = 0 , ( s>0) . 

The dual (12') of (12) is the equation satisfied by (0). It is written 
down from (12) by the substitution 

8, v«\ p(«, X « /*.<'> - (0), (*«>), (p<«), <X<*>), (M(i))«; 

An alternative form (12") of (12') is given from (12'), by the second 
equation of (10), by the substitution 

*, M ( , ) , P<*> - W, G*(<)), (P(fc)); 

i4(*«>, ««>), il(X<*>, «<*>) -> (ii(*<'>, 8<»)), (4(X<*>, «<*>)). 

We now generalize (12), (12'), (12") by constructing the equations 
satisfied by the umbral Appell polynomials An{%, 0), (w = 0, 1, • • • ), 
in £ with the base 0, and by the factorials G4(£, 0))w constructed from 
the An(%, 0). The equation for .4(£, 0) can be written down from (12) ; 
that for (A(%, 0)) is then obtained immediately by dualizing. We find 

ibjwdMt, 0)+Mvu\ s ^ ) ] * + è **^t t , 0)+P(&)]W 

(15) *" 

= Z *£»[« + 4(X<", *W)J" + É ^<[f + M(i>]", 
/i=0 i=0 

M = 0, 1, • • • . 

This follows from (12) by the first equation of (10) on replacing 0 in 
(12) by £ + 0, expanding the result in powers of £, and using (12) with 
u = 0, 1, • • • to identify coefficients of £M in (15). As already noted, 
An(%9 0) is the ordinary Appell polynomial An(x, 0) in x with the base 
0 if £ is its special case, the umbra of (1, x, x2, • • • ). To obtain (12) 
from (15) we take Z^rj and refer to the first of (8). The dual (15') 
of (15) may be stated in each of several equivalent forms. One is ob­
tained by the substitution 

il ft, 0),A(vM, ô">),i4(X<*>, 8<*>) -> (4 ft, 0)), W \ «<»)), (il(X<*>, «<*>)) 

in (15), with p<*>->(p<*>) on the left and £, jLt(t>)->(£), G*(0) on the right. 
We prove the foregoing results first under a convergence restriction 
which will be removed presently. Assume for a moment that all the 
expressions 

expX w / , expju(i)/, expv^H, exp p<kH 

when written out as ordinary MacLaurin series are absolutely con-
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vergent for some | / | > 0 . By (11), the like is true for Q(i) = F(t)/G(t), 
where 

l m 

F(t) m XI Lht
h exp X<">* + J2 Mi exp ^ t , 

(16) 
n r 

G(t) s J ) Njt>' exp v«H +J2Rk exp p<*>/. 

Writing Ç(/)=exp 0/, thus defining 0, we have 

** = A! exp ôW/, l* = j \ exp ô<»/; 

and equating coefficients of 0M in the identity in t, Q(t)G(t) = F(t)t we 
get (12). Again, 

ei*Q(t) = e<W s [«««?(/) ]/G(*); 

hence 

GOO exp i4(£, 0)/ = F (f) exp £/; 

whence (15) follows. The duals are obtained by the substitution 
/—>log (1+/ ) , obviously permissible under the convergence assump­
tions, in the foregoing identities, and (3), (5). By the inverse substitu­
tion t—>e' — 1, the equivalence of the duals follows. To remove the 
convergence restriction we refer to a former paper* where it was 
proved that in such formal uses of power series as are sufficient here 
convergence is irrelevant. 

To save space, all applications, of which several have been made, 
will be omitted here, but will appear elsewhere. 

CALIFORNIA INSTITUTE OF TECHNOLOGY 

* Transactions of this Society, vol. 25 (1923), pp. 135-154, §2. 


