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NEVANLINNA ON ANALYTIC FUNCTIONS 

Eindeutige analytische Funktionen. By R. Nevanlinna. (Grundlehren der mathe-
matischen Wissenschaften, vol. 46.) Berlin, Springer, 1936. 6+353 pp. 

The list of contents is as follows: Introduction. 1. Conformai mapping of simply 
or multiply connected domains. 2. Solution of Dirichlet's problem for a smooth 
domain. 3. The principle of the harmonic measure and its applications. 4. Relations 
between euclidean and non-euclidean determinations of measure. 5. Point sets of 
harmonic measure zero. 6. The first fundamental theorem in the theory of mero-
morphic functions. 7. Functions of bounded type. 8. Meromorphic functions of finite 
order. 9. The second fundamental theorem in the theory of meromorphic functions. 
10. Applications of the second fundamental theorem. 11. The Riemann surface of 
univalent functions. 12. The type of a Riemann surface. 13. Ahlfors' theory of cover­
ing surfaces. Literature. Index. 

The theory of functions of a complex variable is largely the creation of the nine» 
teenth century. At the turn of the century the attention of the analysts was diverted 
into other channels. Integral equations and especially the theory of integration were 
new fields which promised heavy returns and attracted most of the budding analysts. 
The Scandinavians, however, with their usual ability to absorb and develop new ideas 
without sacrificing what is valuable in the old ones, remained faithful to their older 
allegiance. In Helsingfors, in particular, the able leadership of E. Lindelof created a 
school of analysts which is nowadays leading in the field of complex function theory. 
R. Nevanlinna is one of the most brilliant exponents of this school, and the present 
treatise gives an account essentially of their work in which he has taken such a promi­
nent part . 

The central question in the work of this school is the value distribution problem 
for functions meromorphic in a domain. The geometrical aspect of this problem is the 
question of the structure of certain classes of Riemann surfaces. As basic tools in 
the study of the problem figure the theory of harmonic functions and various non-
euclidean notions of measure, in particular, harmonic and hyperbolic measures. All 
material in the book is grouped around these ideas and their interrelations. It is 
impossible for me to give an adequate account of this excellent book within reasonable 
compass, but some remarks concerning the main questions will perhaps induce some 
of my readers to read the book itself. 

Let us start with the value distribution problem. It is supposed that w —f(z) is 
single-valued and analytic save for poles in the domain D: \z\ <RS °°. What can 
be said concerning the distribution of the values of this function in D? What values 
are actually taken on, which values are omitted, and which are approached as the 
variable z tends towards the boundary of D? Let us represent the values of w by 
stereographic projection upon a sphere of radius 1/2. Then w=f(z) maps the region 
\z\ ^r<R on a Riemann surface Fr on the sphere. Let the area of Fr be irA(r). 
Then A (r) measures the number of times that Fr covers the sphere and may be called 
the average number of sheets of Fr', it is intimately connected with the value distribu­
tion problem. Let n(r, a) be the number of roots of the equation ƒ (s) —a for \z\ ^r, 
each root being counted with its proper multiplicity. If A(r)~»«> as r—>R, one might 
be led to suspect tha t n(r, a)~A (r) for almost all a. This is t rue for sufficiently simple 
functions ƒ(3), but in general the functions A(r) and n(r, a) are too irregular for the 
validity of such asymptotic relations. This difficulty can be eliminated, however, by a 
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suitable integration process which smoothes out the irregularities. This process leads 
to the interesting equality 

(i) T(r) m ('Ait) % - N(r, a) + m(r, a). 
J o t 

This is Nevanlinna's first fundamental theorem in the form due to Shimizu and 
Ahlfors. Here T(r) is his characteristic function, and 

ƒ• r
 r -, dt 

[»(*, a) - n(0, a)] — + n(0, a) log r, 
o t 

(3) m(r} a) = - - f ' log x [ / ( ^ e ) , a]d$ - log x [ / (0) , a ] , 

where x[w, #] is the reciprocal of the chordal distance between the points w and a 
on the sphere. The enumerative function N(r, a) measures the number of times that 
f(z) actually becomes equal to a for \z\ ^rt whereas the osculating function 
(Schmiegungsfunktion) m(r, a) measures the rate of approach of f(z) to the value a 
as I z\ —>R. Equation (1) states tha t ƒ (z) has the same affinity to all values if properly 
measured. This statement becomes somewhat illusory if T(r) remains bounded. This 
situation arises if and only if R < oo and ƒ(z) is the quotient of two functions bounded 
in \z\ <R. Nevanlinna says that such a function is of bounded type (beschrânktartig). 

Suppose now tha t T(r)—> oo as r—>R. Since the integral of m(r, a) over any measur­
able set of a-values on the sphere stays bounded as r—>R, we conclude that 
T(r)~N(r, a) for almost all values of a. Thus the frequency is approximately the 
same for almost all a. This result replaces the hypothetical relation A(r)~n(r, a) 
which it yields upon formal differentiation. 

More precise information is given by the second fundamental theorem, which 
takes the form of the inequality 

(4) E tn(rt a,) < 2T(r) - Ni(r) + 5(f). 

Here q>2 and Ni(r) is an enumerative function of the same type as N(r, a), obtained 
by replacing n(rt a) in (2) by ni(r), the number of multiple values of f(z) in | z | ^ r , 
each &-tuple value being counted k-~l times only. Finally S(r) is a remainder which 
usually is 0(log r) if R = oo and 0 {| log (R-r) | } if R < oo. 

Formula (4) leads to the defect and ramification relations. Let Ni(r, a) be ob­
tained by replacing n(r, a) in (2) by tii(r, a), the number of multiple roots of the 
equation ƒ (s) —a, each fe-fold root being counted k — 1 times, and put N(r, a)=N(r, a) 
— Ni(r, a). Nevanlinna makes the following definitions: 

/<\ */ ^ r • *w ( r> a ) *f \ v • t ^ j j l r^f \ 1 r N(r,a) 
(5) 8(a) s= hm inf———, ${a) = lim inf— , ®(a) = 1 — limsup-+R T(r) r-+R T{r) ' v ' T^R* T{r) ' 

where d(a) is known as the defect of a, while 0(a) and 0(a ) are known as the algebraic 
and the total ramification index, respectively. For every a, 5(a) -\-0(a) ^©(a ) ̂  1. For­
mula (4) now gives the fundamental relations* 

(6) E «GO + E *(«) s E ©(«) ë 2, 
where the summation extends over all values of a. The formula shows that 6(a) and 
0(a) can be different from zero for at most a denumerable set of values a. 

The formula contains a number of important special theorems. The defect 8(a) 
has its maximal value 1 if N(r, a) —o[T(r)], in particular, if ƒ (z) 9e a for all z. Formula 

* If R< » , it is supposed that log (R — r)/T(r)—>0 when r-*R. 
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(6) shows that there are at most two such values unless f(z) is a constant. This is 
Picard's theorem. A value a is said to be completely ramified if the equation ƒ(s) —a 
has only multiple roots. For such a value @ ( a ) ^ l / 2 , so there can be at most four 
such values. For the Weierstrass ^-function the values ei, e%, ez, and <*> are completely 
ramified, so the theorem is the best possible of its kind. This theorem also leads to a 
new proof of another classical theorem due to Picard, according to which an algebraic 
relation of genus greater than one cannot be uniformized by functions meromorphic 
for \z\ < oo. 

Nevanlinna's fundamental theorems are metric statements concerning the struc­
ture of certain Riemann surfaces. The defect relation raises the problem of the exist­
ence of meromorphic functions having preassigned defects at preassigned points. If 
the points are finite in number and the defects are taken as rational numbers having 
the sum 2, the problem has been completely solved by Nevanlinna. It is enough to 
construct a Riemann surface having a suitable number of logarithmic branch points 
over each of the preassigned points. The corresponding mapping function w =ƒ(z) is 
characterized by the fact that its Schwarzian derivative is a polynomial in z, and vice 
versa. 

It is known tha t a simply connected Riemann surface can be mapped in a one-
to-one and conformai (except for possible interior branch points of finite order) man­
ner upon one of the following domains: (i) the whole plane, (ii) the punctured plane, 
(iii) the interior of the unit circle. The surface is said to be of the elliptic, parabolic, 
or hyperbolic type according as (i), (ii), or (iii) holds. The elliptic case is elementary, 
but it is not an easy mat ter to tell from a description of the structure of the surface 
whether the parabolic or the hyperbolic case holds. The frequency of the branch 
points seems to be the decisive factor. The reader will find some results in this connec­
tion in Chapter 12 of the treatise under review. 

The geometric side of the theory has been put upon a very general basis through 
the brilliant investigations of Ahlfors on covering surfaces. On the basic surface F0, 
which may be closed or have a boundary, he supposes the existence of a finite tri­
angulation and of a metric satisfying certain mild restrictions. A covering surface F* 
of Fo having infinitely many sheets is supposed to be generated by a process of regular 
exhaustion from a sequence of finite covering surfaces Fk. The boundary of Fk rela­
tive to Fo is taken to be rectifiable in the metric and of length Lk. If Sk is the average 
number of sheets of Fk, tha t is, the ratio between the area of Fk and that of .Fo, then 
Lk/Sk should tend to zero with 1/k. Let D be an arbitrary domain on F0. That part 
of Fk which lies above D consists of a certain number of connected pieces which are 
of two types. Those which are unbounded relative to D are referred to as islands, 
whereas the remaining pieces will be called peninsulas (Zungen, in Nevanlinna's 
terminology). Let Sk(D) be the average number of sheets of Fk above D, let nk(D) 
be the number of sheets which belong to islands above D, and put Sk(D)—tik(D) 
-\-mk{P). Then the first fundamental theorem has the following analogue. There exists 
a constant h(D), depending upon D only, such tha t 

(7) fik{D) + mk(D) = Sh + vhLk, \m\< h{D), 

for every &.f 
For the second fundamental theorem we suppose in addition that FQ is a closed 

surface of genus zero, which we can take to be the sphere, and that the open covering 
surface F* is simply connected. Consider q>2 disjoint domains Dj on Fo. Let the 
simple multiplicity of an island be defined as the negative of its Euler characteristic, 
and let pk(Dj) be the sum of the simple multiplicities of the islands of Fk above Dj. 

t Formula (A) on p. 332 seems to be faulty. 
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Then there exists a constant h, depending only upon A , • • • , Dg, such tha t 

(8) (q - 2)Sk -hLkSlL Pk(Dj) ^ qSk + hLk. 
3=1 

This inequality corresponds to the second fundamental theorem and gives rise to 
corresponding defect and ramification relations. Let nkti(D) denote the sum of the 
orders of the branch points of Fk above D, and put 

(9) 6(D) = lim inf ^ - , 6(D) = lim inf * ^ . 
fc-+oo Sk * - * c o Sk 

These are the defect and the ramification index respectively of D with respect to the 
covering surface F*. We have the basic relation 

(10) E [0(A) + 0(A)] ^ 2 . 
y-i 

From this relation we can draw conclusions which are obvious analogues of the 
theorems quoted above. Thus, for instance, a regularly exhaustible, simply connected 
covering surface of the sphere covers every point of the sphere with at most two 
exceptions. There can be a t most four disjoint domains in each of which every sheet 
of F* has a branch point. These theorems apply in particular to the case in which F* 
is the conformai map of the interior of the circle \z\ <R^ <*> by a meromorphic func­
tion w=f(z). If R — oo the surface is always regularly exhaustible, and if R< oo it is 
sufficient that lim sup (R — r) A(r)— oo. The resulting theorems complete those of 
Nevanlinna in an interesting manner. 

It remains to say a few words about the basic notion in the first part of the book, 
tha t of harmonic measure. Let D be a domain in the complex plane, B its boundary, 
and B=a-\-p a disjunction of B. For sufficiently simple domains D and boundary 
sets a there exists a uniquely determined function œ(z, a, D) which is bounded and 
harmonic in D and takes on the value 1 on a and 0 on /3. This function is referred 
to as the harmonic measure of the set a with respect to the domain D at the point z. 
If D is mapped conformally in a one-to-one manner upon D* so that z goes into z* 
and a into a*, then œ(z, a, D)—œ(z*f a*, D*). But if the correspondence is merely 
analytic without being one-to-one, the harmonic measure is increased, or at least 
never decreased. This principle of the harmonic measure turns out to be a very fertile 
source of important inequalities. Another such source is Carleman's principle of ex­
tension: if D is extended across 0, then the harmonic measure increases. From these 
principles the author derives the well known theorems of Phragmén-Lindelöf, Landau, 
and Schottky, further, the deformation theorems of Koebe and of Ahlfors, to mention 
only a few examples. 

In closing this review permit me to point out some problems in modern function 
theory to which the Helsingfors school has made important contributions, but which 
have been omitted in Nevanlinna's book. One would have liked to have seen a dis­
cussion of functions meromorphic in other domains than the interior of a circle or the 
punctured plane. The case of a half plane occurs often in practice. While this case 
can be reduced to tha t of a circle by conformai mapping, this method does not yield 
the most convenient formulas. The original memoirs of F . Nevanlinna and R. 
Nevanlinna being not easily accessible, the inclusion of this material would have 
been of great service to the mathematical public. One also misses a discussion of 
theorems of the Blaschke or Carlson types with their many generalizations. A synop­
sis of the present day stand of this question would have found its natural place in the 
book under review. E l N A R H l L L E 


