
LATTICES AND THEIR APPLICATIONS* 

GARRETT BIRKHOFF 

It is my privilege to introduce to this Society a vigorous and prom­
ising younger brother of group theory, by name, lattice theory. 
Among other things, I shall try to bring out the family resemblance. 

It is generally recognized that some familiarity with the notions 
of group, subgroup, normal subgroup, inner automorphism, com­
mutator, and their technical properties, in a word, with group 
theory, is an essential preliminary to the understanding of algebraic 
equations, of differential equations, of the relation between the differ­
ent branches of geometry, of automorphic functions, of crystallog­
raphy, and of many other parts of mathematics and mathematical 
physics. 

I shall try to convince you that, in the same way, some familiarity 
with the notions of lattice, sublattice, the modular identity, dual 
automorphism, chain, and their technical properties, in a word, with 
lattice theory, is an essential preliminary to the full understanding 
of logic, set theory, probability, functional analysis, projective ge­
ometry, the decomposition theorems of abstract algebra, and 
many other branches of mathematics. 

It is often said that mathematics is a language. If so, group theory 
provides the proper vocabulary for discussing symmetry. In the same 
way, lattice theory provides the proper vocabulary for discussing 
order, and especially systems which are in any sense hierarchies. One 
might also say that just as group theory deals with permutations, 
so lattice theory deals with combinations. 

One difference between the two is that whereas our knowledge of 
group theory has increased by not more than fifty per cent in the 
last thirty years, our knowledge of lattice theory has increased by 
perhaps two hundred per cent in the last ten years. 

Lattice theory is based on a single undefined relation, the inclusion 
relation x^y. In this it resembles group theory, which is based on 
one undefined operation, group multiplication. The relation of in­
clusion is assumed to satisfy three primary postulates: 

* This paper and the five papers which follow it constitute a partial record of the 
Symposium on Lattice Theory arranged by the Program Committee and held at the 
Charlottesville meeting of the Society, April 15,1938. The first three papers present 
the principal addresses, and the other three contain the remarks of the leaders of the 
discussion. 
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PI . For all X y X —— X (reflexiveness). 

P2. If xSy and y^x, then x = y (anti-symmetry). 

P3. If xSy end ytkz, then x^z (transitivity). 

Following Hausdorff, we shall term a relation which satisfies 
P1-P3, a "partial ordering." 

Mathematics abounds with examples of partial orderings. For in­
stance, set-inclusion is a partial ordering, whether we consider all 
subsets of a class, or merely subsets "distinguished" by some special 
property (as for example the subalgebras of an abstract algebra). 
Again, the relation "x divides y" partially orders the integers. The 
real numbers are partially ordered by the relation xSy as usually 
interpreted. Since time is isomorphic with the real number system, 
the relation of time-priority is also a partial ordering. Curiously, pri­
ority even defines a partial ordering when understood in the sense 
of the special theory of relativity. Real functions are partially ordered 
if we let f^g mean that f(x) ^g(x) for all x. And finally, partitions 
are partially ordered if we let II ^ I I ' mean that II is a refinement 
(that is, subpartition) of IF. 

Hausdorff introduced the definition of a "partially ordered system" 
in the first edition of his Mengenlehre, but omitted it in the later edi­
tions. In view of the examples just mentioned, this diffidence seems 
unjustified, at least if we admit the philological principle of Zipf that 
it is reasonable to have a word for any frequently used concept.* 

It is clear from the symmetry of conditions P1-P3 that the relation 
y^x meaning x^y defines from any given partial ordering another 
"dual" partial ordering. This "duality" pervades all lattice theory. 

In partially ordered systems, special roles are played by elements 0 
and I which satisfy O^x and x^I for all x. They are clearly unique, 
and we shall consistently denote them by 0 and / . Moreover they are 
even important in philosophy ; thus to say that we are all descended 
from Adam is simply to say that our genealogical tree has a 0. 

It is also easy to define the notion of a simply ordered system or 
"chain" in terms of the inclusion relation. By a chain, we mean a par­
tially ordered system in which the following postulate is satisfied : 

P4. Given x and y, either x^y or yi^x. 

A few partially ordered systems, such as the real numbers, are sim­
ply ordered, but the majority are not. 

* Thus although there is no word signifying one's "stepmother's second cousin's 
son-in-law/' we would coin a word to describe this relationship, if we had frequent 
occasion to talk about it. 
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On the other hand, almost all partially ordered systems contain 
chains as subsystems; and, in fact, the so-called "chain conditions" 
of abstract algebra are simply the conditions that such chains be well-
ordered. 

In any partially ordered system, one can define the "join" of a set 
of elements xa as an element which (1) contains every xa, and (2) 
is contained in all other elements which contain every xa. One can 
define the "meet" of the xa dually.* 

These definitions specialize in many interesting ways. In set the­
ory, they specialize to the usual definitions of the sum and product of 
sets. With subgroups, they define the subgroup generated by and the 
intersection of the xa. With divisibility, they define the least common 
multiple and highest common factor of the xa. Applied to real num­
bers, they define the l.u.b. and gr.l.b., and to real functions, the 
supremum and infimum of the xa. Finally, what is usually called the 
"product" of two partitions is their "meet" in the sense just defined. 

In general partially ordered systems not all sets of x have joins 
and meets. This leads us to define a "complete lattice" as a partially 
ordered system P , every subset of which has a join and a meet. It 
may be that every countable subset of P has a join and a meet, al­
though P is not a complete lattice; in this case P is called a cr-lattice, 
by analogy with the usual notions of <r-rings and o*-fields of sets. If 
every two elements x, y of P have a join x u y and a meet x n y, then 
every finite subset of P has the same property, and P is called a lattice. 

The fact that xu y and x n y are (single-valued) binary operations, 
suggests regarding lattices as abstract algebras and indicates a rela­
tionship not only to groups, but also to rings, hypercomplex alge­
bras, and so on. 

Inclusion, and therefore all lattice definitions,f can be defined in 
terms of either operation; for example, x^y if and only if x — x u y. 
Moreover the two lattice operations have a number of important prop­
erties, such as the following: 

LI . xu x = x and x n x = x. 

L2. x u y = y u x and x n y—y n x. 

L3. x u (y u z) = {x u y) u z and xn (y n z) = (x n 3/) n z. 

L4. x = x u (x n y) = x n (x u y). 

* There is some confusion as to the origin of these definitions; they are due to 
C. S. Peirce, American Journal of Mathematics, vol. 3 (1880), p. 33. 

t Thus 0 can be defined through the identity 0 n # = 0, and I through the identity 
x n I—x. 
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Conversely, it is easy to show that any system in which two opera­
tions are denned which satisfy L1-L4 is a lattice. 

The analogy of lattices with groups and rings suggests obvious defi­
nitions of such notions as sublattice, homomorphism, automorphism, 
and so on. Also, the existence of special classes of rings (for example, 
commutative rings and fields) suggests looking for special classes of 
lattices. Among these, three may be cited: modular lattices, distribu­
tive lattices, and complemented lattices. These are defined by the 
assertion that they satisfy the following postulates, respectively: 

L5. If x^z, then x u (y n z) = (x u y) n z. 

L6. x n (y u z) = (xny) \j (xi\z) and xu (y n z) = (xu y) n (xu z). 

L7. To every x corresponds an x', such that x n x ' = 0 and x u x' = I. 

We shall use this classification later; we only note now that each 
condition is self-dual, and that any distributive lattice is modular. 

In this connection, it is a curious thing that C. S. Peirce should 
have believed that every lattice was distributive. In fact he says 
"this is easy to prove, but the proof is too tedious to give here." 
Actually, it is hard to imagine a more serious blunder; I leave it to 
you to draw your own moral. 

Two auxiliary notions play an important role in lattice theory. The 
first is that of a "modular" functional as a real function defined on a 
lattice and satisfying the condition : 

M l . w [ x ] + w [ 3 ' ] = w [ x n 3 ! ] + m [ x ; u 3 ' ] . 

Measure and dimension functions are modular. 
The second is that of an intrinsic lattice topology. This is easy to 

define in chains by letting intervals be neighborhoods of their interior 
points; we shall only hint at the general definition by pointing out 
that if we define lim sup {xk} as the meet of the joins Sn of the sets Sn 

of xk, (k^n), and lim inf {xk} dually, then (1) lim sup à lim inf for 
any sequence, and (2) when the two are equal, we may say that \Xk} 
converges to the common limit. 

I think it is now evident that lattice theory provides one with a 
useful language for discussing order and related concepts. Lattice the­
ory also has much more specific applications. 

Thus consider the isomorphism between sets and qualities, first 
propounded by Boole. With each quality* Q Boole associated the 
hypothetical set 5 of all objects having the quality Q; conversely, 

* Qualities are called in logic "propositional functions"; a nontechnical synonym 
is the word "property. " 
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with each set 5 of objects he associated the hypothetical "quality" 
Q of membership in S. 

Boole's correspondence has many properties. In the first place, it is 
effectively one-one. Again, it identifies the logical proposition UQ im­
plies Qi" with the set-theoretical proposition S S Si. Similarly, it iden­
tifies the quality "Q or Qi" with the set-theoretical sum 5 u Si, the 
quality "Q and Qi" with the product S n Si, and the quality "not Q" 
with the set complement S' of the corresponding set. 

But it is easy to show that the subsets of any class I satisfy P1-P3 
and L1-L7 if the above notation is used; that is, in technical lan­
guage, if they form a Boolean algebra. We infer that the algebra of 
qualities (or "propositional functions") is also a Boolean algebra. 

This has interesting immediate consequences. Thus it reduces the 
"law of contradiction" and the "law of the excluded middle" (tertium 
non datur) to simple theorems on Boolean algebra, namely, x^ (V)' 
and (x')'^x. 

Even more interesting is the light which it sheds on proposed modi-
fictions of logic. One can very easily take exception to Boole's primi­
tive ideas. For example, the existence of "categorical" propositions, 
distinguishing one object from all others, is questionable. Also, 
Brouwer and the intuitionist school have attacked the law of the 
excluded middle in a fairly convincing way. More recently, Tarski 
has shown that the unrestricted distributive law* implies the exist­
ence of "categorical" propositions; so this also is suspect. In the same 
vein, it has been pointed out by von Neumann and myself that 
quantum mechanics suggests a propositional calculus in which all 
laws except the distributive law L6 hold; even L5 and the law of the 
excluded middle are valid. 

So much for logic, and this is a good place to emphasize the fact 
that not all logic is Boolean algebra; logic cannot be taught as a 
branch of lattice theory. But neither has Felix Klein's Erlanger 
Programm reduced geometry to the status of a branch of group the­
ory. Lattice theory is like group theory in providing some, but not 
all, of the leading ideas of the parts of mathematics to which it applies. 

The applications of lattice theory to set theory are of a more tech­
nical nature; I shall confine myself to a single illustration. Consider 

* Obtained from the simple distributive law L6, as follows. By induction, L6 
can be shown to imply 

II {tlxtj c = Z {TLxt.M)} f 
i = l ( j = l ) <*> \i-\ ) 

summed over all <f>. If we remove the restriction that the number of indices be finite, 
we obtain the transfinite distributive law. 
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the Boolean algebra B of all Borel sets of (say) a unit square. I t is 
well known that if one ignores sets of measure zero, one gets a homo-
morphic image B/N of 5 , and that if one ignores sets of first (Baire) 
category, then one gets another B/F. I t is a theorem on Boolean 
algebra due to Stone, and so a part of lattice theory, that this is be­
cause the sets of measure zero (and likewise those of first category) 
form an "ideal," that is, contain with any set all its subsets and with 
any two subsets their sum. Thus lattice theory tells us, at least in 
principle, how to find all the homomorphic images of a given Boolean 
algebra. 

Lattice theory also suggests the rather remarkable theorems that 
B/N and B/F are "complete lattices." It suggests the question "are 
they isomorphic?" The answer is, that they are not. It then suggests 
that they form propositional calculi with the remarkable property of 
being "atom-free," that is, of containing no categorical propositions. 

I think you are all aware of the recent changes in the foundations 
of the theory of probability and the tendency to identify it with the 
theory of measure. The necessity for this is indeed suggested directly 
by geometrical probabilities: if I is any region of unit area, then the 
measure of any subset S of I can be identified with the probability 
that a point thrown into I at random will come to rest in S. 

From the axiomatic point of view, the common features can be 
easily described. Both measure functions and probability functions 
are additive functionals on Boolean algebras; both are "positive" in 
the sense that x^y implies m[x]^w[} / ] ; in both, m [ 0 ] = 0 . Proba­
bility is distinguished only by the special assumption m [ / ] = l. 

Lattice theory makes it easy to discuss the "completeness" of these 
postulates, and gives one an easy vantage point from which to com­
pare Jordan with Lebesgue measure, or Tornier's with KolmogorofFs 
postulates for probability. It also leads to the neat concept of "sto­
chastic distance," defined as m[x u y] — m[x n y], and correlates it 
with the "dimensional distance" d [ x u j ] - J [ x n 3 ' ] used by von Neu­
mann in an entirely different connection. Besides being metric in the 
sense of Fréchet, stochastic distance has many other properties and 
uses. 

These remarks do not go very deep ; I principally wish to show that 
the new axiomatic foundations of general probability are lattice-
theoretic, without discussing their importance. 

I should next like to show how similar ideas lead to a vastly im­
proved mathematical theory of dependent probabilities. In the theory 
of dependent probabilities (alias Markoff chains, alias stochastic proc­
esses), one expresses one's knowledge about a system 2 at any 
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instant t by a probability f unction p[x; / ] ; p[x; t] expresses the proba­
bility that S has the property x. This point of view is familiar in 
quantum mechanics where p[S; t] =fs$(t)\l/*(t)dV, and it is used in 
classical statistical mechanics. 

One also assumes that one's knowledge of 2 at time / can be pro­
jected into the future, but only imperfectly; in the simplest (finite) 
case, the dependence is expressed by a matrix of transition probabili­
t ies.! In the general case, the usual formulation is highly technical 
and involves integral equations with Lebesgue integrals. Lattice the­
ory suggests a very much simpler formulation, in terms of linear oper­
ators on "partially ordered function spaces" which I shall discuss 
later. 

Time prevents my giving further details J of this theory; I shall 
only mention that (1) it makes possible a ten-line proof of MarkofFs 
fundamental theorem on convergence to the case of independent 
probabilities, and (2) allows one to generalize the mean ergodic theo­
rem of von Neumann, through the method of G. D. Birkhoff, from 
deterministic to non-deterministic mechanics. 

The application of lattice theory to functional analysis begins with 
the observation that there is a natural partial ordering for the ele­
ments of every significant space of real functions. Moreover this order 
is preserved under linear translations x—^x+a, and under multiplica­
tion x—>Xx by positive scalars; it is inverted by the transformation 

Indeed, under this partial ordering most function spaces become 
lattices; we shall call such function spaces "linear lattices." It is easy 
to prove that any linear lattice satisfies the distributive law L6, and 
that its elements x admit a Jordan decomposition into their positive 
and negative parts. 

Again, the intrinsic topology (mentioned earlier) of most linear lat­
tices is decidedly interesting. In the case of Banach spaces, not only 
are all additive functionals "modular," but an additive functional 
is bounded (in the sense of Banach) if and only if it is the difference of 
"positive" functionals, or equivalently, numerically bounded on all 
sets which are "bounded" in the lattice-theoretic sense of having up­
per and lower bounds. This leads to a purely lattice-theoretic notion 
of conjugate space, which generalizes Banach's essentially metrical 
notion. 

Most function spaces thus satisfy L5 and L6 without satisfying L7. 

t These matrices play a familiar role in Bayes' theorem. 
J They are sketched in my paper Dependent probabilities and spaces (L), Proceed­

ings of the National Academy of Sciences, vol. 24 (1938), pp. 154-159. 



800 GARRETT BIRKHOFF [December 

Projective geometries, on the other hand, satisfy L5 and L7 without 
satisfying L6; they are thus "complemented modular lattices." One 
can say that L5 and L7 characterize the algebra of classes; in this 
connection, it is interesting that projective geometry has been known 
traditionally as the "geometry of intersection and union" (Geometrie 
des Schneidens und Verbindens). 

How completely L5 and L7 characterize projective geometry is 
shown by the fact that any complemented modular lattice whose 
chains are of bounded length is in a precise sense the "direct sum" of 
projective geometries, and conversely. This enables one to build up 
projective geometry in terms of the algebra of combination (L1-L5 
and L7), of a finite chain condition, and of a condition of algebraic 
irreducibility. These conditions are all self-dual, and so make the cele­
brated "duality principle" of projective geometry apparent from the 
start. Incidentally, the irreducibility condition is the only condition 
which is not purely lattice-theoretic;f it is equivalent to the usual 
postulate that every line contains at least three points. 

Von Neumann has shown how omission of the chain condition leads 
one to envisage point-free% projective geometries, in which a (modu­
lar) "dimension function" ranging continuously from 0 to 1 is defined. 
These "continuous-dimensional projective geometries" are beautiful 
analogues of the Boolean algebra of Borel sets modulo null sets ; the 
role of measure is exactly replaced by that of dimension. 

In these brief remarks, I have ignored the important applications 
of lattice theory to the foundations of abstract algebra, and especially 
of modular lattices to decomposition theory. I have also ignored the 
role played by lattices in the general theory of bicompact spaces. 

HARVARD UNIVERSITY 

f Besides, it is equivalent to the lattice-theoretic condition that every x not 0 or ƒ 
has at least two complements. 

t The word "point" (or "atom") is understood in the sense of Euclid, as an ele­
ment a>0 which is indivisible, tha t is, is such tha t a>x>0 has no solution. In logic, 
the same condition characterizes "categorical propositions." 


