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ON GENERATING THE SIMPLE GROUP LF(2, 2N) 
BY TWO OPERATORS OF PERIODS 

TWO AND THREE* 

ABRAHAM SINKOV 

The purpose of this paper is to consider the question of the num­
ber of abstractly distinct ways in which it is possible for two opera­
tors of periods two and three to generate the simple group LF(2, 2N). 
The general procedure to be followed in studying such a problem has 
been outlined by Professor Brahanaf and has already been applied 
to LF(2> 23) by the author.J Those previous results suggested the 
present generalization. 

Since the 2 2 ^ - l substitutions of period two in LF(2y 2N) are all 
conjugate,! it is sufficient in seeking possible generating operators to 
consider only one of them, say 

In the representation of G on 2^ + 1 letters, T leaves fixed the single 
element <*>. The largest subgroup within which T is invariant is G(00), 
composed of all the substitutions 

r M s ^ V M in the GF[2*], 

which keep the single element <*> unchanged. The group G(°°) is 
abelian, of order 2N and of type (1, 1, 1, • • • )• 

If the operators of period three are divided up into sets of com­
plete conjugates under G(00), then the various members of each set 
satisfy with T the same abstract relations, and it is sufficient to select 
from each such set only one operator to serve as a possible second 
generator with T. The number of these sets to be considered depends 

* Presented to the Society, February 20, 1937. 
t H. R. Brahana, Pairs of generators f or the known simple groups whose orders are 

less than one million, Annals of Mathematics, vol. 31 (1930), pp. 542, 543. 
{ Necessary and sufficient conditions for generating certain simple groups by two 

operators of periods two and three, American Journal of Mathematics, vol. 49 (1937), 
pp. 69-72, hereafter referred to as Necessary and sufficient conditions. 

§ The various properties of LF(2, 2N) of which use is made in this paper are given 
in Dickson's Linear Groups with an Exposition of the Galois Field Theory, 1901, chap. 
12. 
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on the form of 2^ + 1. For, when 2^ + 1 is a multiple of three, G con­
tains 2^(2^ — 1) operators of period three, whereas when 2^ + 1 is not 
a multiple of three, there are 2^(2^+1) such operators. 

In the former case, there are 2^—1 sets of 2N operators each, and 
we may choose as a representative from each set the operator 

/ 0 , x2a\ 
Sazzl- I, « = 0 , 1 , 2 , . . . , 2 " - 2, 

\ 1 , xa ) 

where x is a primitive root of the GF[2N]. In the latter case, there 
are 2^ + 1 sets of 2^ operators each. We may again choose the 2^ — 1 
operators Sa together with the two additional operators 

** - (-5—i) 
and S2N+X = (S2N)2. Since 

r ( 2 # - l ) / 3 r ( 2 # - l ) / 3 \ 

S2NT 
\ o] Î / 

is of period three, S2N and T generate a tetrahedral group of order 12. 
The same is true of S2N+I and T, so that neither of these pairs can be 
used to generate the entire group. Moreover, S0T is of period two, so 
that {So, T\ is of order six. In every case then, it is sufficient to con­
sider only the 2^ — 2 operators Sai ( a^O) . 

Now it may happen, for a particular subscript k, that T and Sk 
generate a proper subgroup H oî G instead of the entire group. We 
note however that 

SaT 
/O, x2a \ 

\1, 1 + xa) 

may not be of period 2, 3, or 4 for any a whatever. Hence, on referring 
to the list of possible subgroups of LF(2, 2N), one sees that H is 
either a linear fractional group LF(2, 2N,r) or else is of order 28d. But 
the latter case may be ruled out. For, if a subgroup H of order 28d 
existed, the commutative subgroup within it of order 2s would in­
clude the commutator subgroup of H. Hence d, and therefore the 
period of SaT, is at most three,* which is not possible. 

H is therefore a linear fractional group, and the number xk must 
be an element in the GF[2Nfr]. If we set N/r*=t, then (xk)2t-l = l, 
from which k(2l —1) = 0 modulo (2^ — 1). The number k is thus re-

* H. R. Brahana, Certain perfect groups generated by two operators of periods two 
and three, American Journal of Mathematics, vol. 50 (1928), p. 348. 
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quired to be a multiple of (2^ —l) / (2 ' — 1). This condition is also 
sufficient, since every subscript which has, with 2^—1, a greatest 
common divisor of the form (2^ —1)/(2' —1), t being a divisor of N, 
corresponds to an operator 5 which generates with T a subgroup of 
LF(2, 20 and hence a proper subgroup of LF(2, 2N). 

We may therefore eliminate from the set of operators Sa all those 
whose subscripts satisfy the above requirement. There will then re­
main, in place of the original 2^ — 2, exactly 

A == 2N —• Y] 2Nlvl + Y) 2N/P1P2 — • • • + (—• l)rJ2 2N/piP2"'Pr 

where the pi are the distinct prime divisors of N and the jth summa­
tion is taken with respect to all the possible combinations of these pi, 
j at a time. This number A is a simplification of the expression 

(2* - 2) - X) (2Nlpi - 2) + ]T) (2N/P1P2 — 2) — • • • 

+ (— l ) r 22 (2Jsr/î>1P2"-^ - 2), 

and its correctness is established as follows : Let k be of the required 
form. Then if / involves b distinct primes, Sk will appear Cb, j times in 
the j th summation. The number of times that it will appear in the 
entire expression is 

1 - b + Cbl2 + ( " I)" = (1 - 1)* EEE 0 . 

Any subscript not of the form required by the preceding paragraph 
will appear only once in the first term. 

The operators S which now remain will all generate with T the en­
tire group G. But the pairs are not necessarily abstractly distinct, for 
in reducing their number to A we have taken account of only the 
inner automorphisms of G. I t still remains necessary to consider the 
possible outer automorphisms. The group of automorphisms of the 
linear fractional group has been studied by O. Schreier and B. L. van 
der Waerden.* It follows from their results that the only possible 
outer automorphisms of LF(2, 2N) are to be found among the auto­
morphisms of the GF[2N]. From this result, it can be seen that the 
group of outer automorphisms of LF(2, 2N) is the cyclic group gener­
ated by the substitution z' = z2, of period N. 

This substitution is commutative with T and transforms Si into 
521, provided we consider the subscript 21 reduced modulo (2^ — 1). 
As a result, the relations satisfied by T and Si are abstractly identical 
with those satisfied by T and 52» i, where i may take on any value 

* Abhandlungen aus dem Mathematischen Seminar der Hamburgischen Uni-
versitât, vol. 6 (1928), pp. 303-322. 
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whatever. Hence the A operators 5 may be divided up into sets, in 
such a way that the subscripts of all the operators in any set are ob­
tainable from some one of them by continued multiplications by two 
and reduction modulo (2^ — 1). The number of operators in any par­
ticular set is exactly iV, except in those cases when the number 2^ — 1 
and the subscripts of the set have a greatest common divisor of the 
form (2^ — l ) / (2 r — 1). But these have already been eliminated. The 
number of sets obtained, and therefore the number of distinct defini­
tions of the group, is consequently A /N. 

As a corollary, we have the number theoretic result that A/N is al­
ways an integer. When N is prime, the corollary reduces to a special 
case of Fermat's theorem. I t was pointed out to me by Professor Gill 
that the number A /N is identically Dickson's NN,2,* or the number of 
irreducible polynomials of degree N in a G-F[2]. This coincidence can 
be used to advantage in the following way: 

Consider two distinct irreducible polynomials in the GF[2] of de­
gree N in the variables x and X, respectively. Let Si and o"i designate 
the substitutions 

respectively, and suppose that the pairs of generators 7\ Si and 7\ <7i 
are abstractly identical. Then we get an automorphism of G by mak­
ing T correspond to itself and Si correspond to <7i. As a result, every 
combination of Si and T will have the same period as the correspond­
ing combination of <TI and T. Consider in particular all the combina­
tions of the generators which will reduce to the identity. The formal 
procedure of calculating them is identical for the two separate cases 
if we hold all processes of modular reduction by means of the poly­
nomial modulus until the very last step. We see then that we can thus 
obtain a considerable number of pairs of identical expressions in x 
and X such that both members of each pair will reduce to the same 
value. But such a result will necessarily imply that the two polyno­
mial moduli are identical, which is a contradiction. Hence a given Sa 

will yield with T all the possible definitions of LF(2> 2N) if we take 
advantage of all the distinct methods of generating the GF[2N]. 

We shall bring this paper to a close by demonstrating an interest­
ing general property of every pair of generators S and T of an 
LF(2, 2N). 

In the study of groups generated by two operators of periods two 

* Linear Groups, p. 18. 
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and three respectively, the following substitution has been found very 
useful : 

P = (ST)'1, S = P2Q, 

Q = (srys, T = P3Q. 

It replaces the relations S* = T2 = (ST)n = (S-1T~lST)p = l by P w 

= Ö* = ((?P8)2 = ((?P2)8 = 1. We shall designate either of these sets of 
relations by the abbreviated notation (2, 3, n\ p). 

From the substitution of the equivalents for 5 and T in the defini­
tions of P and Q, it results that 

/xa + x2a, x3a\ / l + x«, x2a\ 

" \ ^ 0 / " \ ~ 0 / 

/x2a + xSa, xZa \ 

\ 1, #a + x2a + xZa)' 

By induction 

\ 1, x° + AN/ 

where AN =X^=~olx(2M~1)a- Now the period of Q is the same as that of 
the commutator of 5 and T. Since 

/ l + x2", x2«\ 
K = TST-tS-1 = ( 1 

\ 1, W 
and 

'BN, x2a 

V i, i + ^ / 
where £Ar = l + X K l x 2 S it follows that 

' £# + #2a£jv + #2a, ^ 2 a ^ + xia /BN + x2aBN + x2a, x2aBN + x4 a \ 

\ x2- + BN, x2«BN ) 

and 

R1N_X = / *2"(1 + ifr) , x2«(l + *2" + lfr) \ 

\ 1 + *2« + ^ , 1 + 3*(1 + *»«) / 

If the period p ol K divides 2 ^ + 1 , BN = x2cx] if it divides 2 * - l , 
BN = l+x2«. 
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Suppose that p divides 2 ^ + 1 . Then, since B2
N„1=BN-\-x2a, we have 

2?i\r_i = 0, and 

AN-! = x«(BN-i + 1) + x2a = xa + x2a, 

Q2N~l = ( — - ), 

\ 1, W 
Q^+l = (X ' X \ (X ' * \ 

\xSa, xia + xia) V 1, x" + xiaJ' 

Vx" + x3a, xZa) \ 1 + #2a, x2a) ' 

(<22iV"1+1P)2 = i , 
(Q(H-t)/2p)2 = } 

In the same way, if p divides 2^ — 1, 

and 

-^—*—\ 

1, X" + W 

/ M2<X, /v*4a\ 

\ i + #2«, W is of period two. Once again, then, (Q(2,+1)/2P)2 = 1. Hence, regardless 
of what particular value p may have, the relation (Q(p+l)/2P)2 = l is 
always satisfied. This result has some interesting consequences. 

The relations (2, 3, n; p), (Ç(2?+1)/2P)2 = 1 define the group desig­
nated by H. S. M. Coxeter* as Gz'n>p. (In this definition, the rela­
tion <2P = 1 is redundantf and may be omitted.) Because of the sym­
metry of Gz>n>p, it follows that if n^p, there must exist a pair of 
generators satisfying (2, 3, p\ ri), (Ç (n+1) /2P)2 = 1. Hence, if we con­
sider all the abstractly distinct definitions of LF(2, 2N) in terms of 
two generators of periods two and three, it follows that the totality 
of values assumed by n is identical with the totality of values as­
sumed by p. 

Moreover, suppose that by the adjunction of suitable conditions 
we could get a complete definition of LF(2, 2N) in terms of (2, 3,n;p), 
(Ç(P+ 1 ) / 2 P) 2 = 1; and suppose further that n^p. Let us introduce 
the substitution P2 = Q, Q~P2 with the additional requirement that 
Pp = l. Then P = <2(w+1)/2> P = <2(p+1)/2, and the relations 

* The abstract groups Gm>n<p, to appear in the Transactions of this Society, 
t Necessary and sufficient conditions, p. 69. 
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pn _ Qp _ (QP*y = (QP2)3 = (Q(P+l>/2p)2 = (Q(p+S)/2p2y _. j[ 

become 

Qn -_ p p = (Q(n+3)/2p2)2 ._ (Qp2)3 = (Q(n+l)/2p)2 = (Qp3)2 = ^ 

in which the roles of P and Q have been interchanged. We are thus 
enabled to pass directly to a second complete definition in terms of 
(2, 3, p;n), (Q<»+»/»P)* = l. 

I t is interesting to observe the first few special cases of LF(2y 2N) 
to see how the results of this paper apply. 

When N = 2, the group is the icosahedral group G3»5,5 which is com­
pletely defined by the relations (2, 3, 5). This is the only definition; 
hence p must be equal to n, a, known result. 

When N = 3, the group* is the simple group of order 504. It has 
two definitions, based on (2, 3, 7; 9) and (2, 3, 9; 7). Since G504 = ö3'7»9 

it is sufficient in each case to add the one relation (<2^+1)/2P)2 = l in 
order to obtain a complete definition of the group. 

No complete definition in terms of two generators has yet been ob­
tained for any N>3. However, Todd has given a complete defini­
tion f of LF(2, 2N) in terms of N+2 generators. Since V and R in his 
definition satisfy (2, 3, 2N — 1), it follows from the foregoing that these 
two operators suffice to generate the entire group, with the single ex­
ception of the case iV = 2, and that one of the values assumed by n is 
2 ^ - 1 . 

When iV = 4, there are three definitions, and the paired values of n 
and p are 15, 17; 17, 15; 17, 17. 

As a last instance we mention N = 5. Here the six paired values of 
n and p are 31, 31; 31, 31; 33, 33; 33, 33; 31, 11; 11, 31. The duplica­
tion of the pair 31, 31 means that LF(2, 26) has two distinct abstract 
definitions based on (2, 3, 31; 31). Or, to express it differently, 
LF(2, 25) is obtainable in two abstractly distinct ways as a quotient 
group of Gs>n'n. A similar remark holds for the duplication of the 
pair 33y 33. 

QUARRY HEIGHTS, CANAL ZONE 

* Necessary and sufficient conditions, p. 70. 
t Journal of the London Mathematical Society, vol. 11 (1936), p. 106. 


