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closed interval with norm the absolute value of the function, and the
space of all functions which are Lebesgue integrable to the pth power,
p=1, with norm the pth root of the integral of the pth power of the
absolute value of the function, are all spaces with a denumerable base
in the sense of Schauder and Banach, and consequently of type 4,
the above theorem holds of all completely continuous linear trans-
formations with Banach spaces as domains and such spaces as ranges.*
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1. Introduction. For the class of k-wise symmetric functions -
(1.1) 7@ = D anzm, a1 =1, a, = 0forn #£ 1 (mod &),
n=1

which are regular and univalent within the unit circle, it has been con-
jectured that there exists a constant A4 (k) so that for all z

(1.2) | an| < A(R)n2le1,

Proofs of this inequality for k=1, 2, 2, 3, were given by J. E. Little-
wood,§ R. E. A. C. Paley and J. E. Littlewood,|| E. Landau,Y and
V. Levin** respectively. As far as the author is aware there is no valid
proofft for >3 in the literature as yet.

It is the purpose of this note to point out that the methods of proof

* Hildebrandt, this Bulletin, vol. 36 (1931), p. 197.

t Presented to the Society, February 20, 1937.

1 The author is indebted to the referee for helpful suggestions which led to a re-
vision of this note.

§ See J. E. Littlewood, On inequalities in the theory of functions, Proceedings of the
London Mathematical Society, (2), vol. 23 (1925), pp. 481-519.

” See R. E. A. C. Paley and ]. E. Littlewood, 4 proof that an odd schlicht function
has bounded coefficients, Journal of the London Mathematical Society, vol. 7 (1932),
pp. 167-169.

9 See E. Landau, Uber ungerade schiichie Funktionen, Mathematische Zeitschrift,
vol. 37 (1933), pp. 33-35.

** See V. Levin, Ein Beitrag sum Koefizientproblem der schlichten Funktionen,
Mathematische Zeitscrift, vol. 38 (1934), pp. 306-311.

+1 See K. Joh and S. Takahashi, Ein Beweis filr Szegische Vermutung iber schlichte
Potengreihen, Proceedings of the Imperial Academy of Japan, vol. 10 (1934) pp. 137—
139. The proof therein was found to be defective: see Zentralblatt fiir Mathematik,
vol. 9 (1934), pp. 75-76.
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used in obtaining the inequality (1.2) for =2 can be utilized to ob-
tain a more general inequality for functions multivalent of order
with respect to the unit circle, provided these functions in question
have no zeros within the unit circle other than at the origin. More
specifically, let m be a non-negative integer, and let

(1.3) 1) = > anzm, trime = 1, a, = 0 for n £ 1 (mod k),
1+mk

be a k-wise symmetric function, regular and p-valent within the unit

circle with f(3) 0 for 0<|z| <1. Then for all »

(1.4) | an| < A(p, Bynr/it, k< 4p,

where A (p, k) is a constant independent of # and f(z). We note in
passing that a sufficient condition that f(z) 0 for 0<|z| <1 is that
p<k(m—+1)+1. For, if f(2) vanishes in 0 < lz[ <1itvanishes (1+mk)
+ % times within the unit circle for the reason that f(2) is k-wise sym-
metric. On the other hand, f(3) cannot vanish more than p times
within the unit circle as f(z) is p-valent. The condition f(z)#0 for
0<|z| <1 is automatically fulfilled for the following special case
which is a generalization of the Paley-Littlewood inequality (p=1).
Let the 2p-wise symmetric function

(1.5) (&) = 2 aus", a1 =1, a, = 0for n £ 1 (mod 2p)
n=1

be regular and multivalent of order p within the unit circle; then the
coefficients are uniformly bounded.

The inequality (1.4) for the particular case k=1, but general p,
was shown to be true by M. Biernacki, who found that if the condi-
tion f(z) #0 for 0<|z| <1 be discarded, the inequality for the coeffi-
cients takes the form

(1.6) lan| < A(p) pm21,

where p,=maximum {|a|, |as|, - - -, |a| }, ¢ being the number of
zeros of f(z) located within the unit circle.*

2. The proof for (1.4). The following lemma for p =1 has been used
by many authors, and is no doubt well known to many for p>1,
though I know of no place in the literature where it has been proved.

* See M. Biernacki, Sur les fonctions multivalentes d’ordre p, Paris Comptes
Rendus, vol. 204 (1936), pp. 449-451.
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LeEMMA. Every function f(z) which is k-wise symmeiric, regular, and
multivalent of order p in the unit circle can be represented in the form

(2.1 JG) = {F@) Y,

where F(2) is regular and multivalent of order p in the unit circle. Con-
versely, if F(3) is any function regular and multivalent of order p in the
unit circle, and if F(z)=0 for 0< [ zl <1, then f(2) is also multivalent
of order p and regular in the unit circle.

ProoF. We may assume f(z) is given by (1.3) and define F(z) to be

© k
F(z) = z( Z anz("‘l)/k>
14+mk

which is regular within the unit circle. Thus (2.1) holds.

Since f(z) is p-valent, then there is a value fe?¢, (1>0), so that
f(z:) =teip for exactly p distinct values z;, (=1, 2, - - -, p). More-
over, since f(z) is k-wise symmetric one has

f(zieZMri/k) —_ esti/k.f(Zl,) — te(st/k+¢)i

fors=0,1,2, - - -, (—1). Thus f*(z/) =t*e**i for z/ =z,e?*7i*, that
is for pk values 2! of z. Thus f*(z), and consequently F(z*), are pk-
valent. Hence F(2) is p-valent. The converse may be proved similarly.

In the proof below we shall make use of an inequality of M. Cart-
wright* for multivalent functions F(z) of order  in the unit circle.
We assume here that F(z) 0 for 0 < |z| <1 so that we have

(2.2) F(re?) | < A(p)(1 — r)=2».

The method of proof for (1.4) now is that of E. Landaut (for p=1,
k=2) with but slight modifications to take care of p>1, k=2. Let
f(2) be defined as in (1.3), and F(z) asin (2.1). Let s=k41 and

{F(zo)}1e = 3 cuan = gltmb ..
1

{F(zks)}llks - Z dpzm = gtmk 4 oo
1

Z A3 = (Z dnz"> .
1 1

* See M. Cartwright, Some inequalities in the theory of functions, Mathematische
Annalen, vol. 111 (1935), pp. 98-118.
t See E. Landau, loc. cit. See also K. Joh and S. Takahashi, loc. cit.
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By differentiation, we obtain

0 0 0
5 naggnt = s(Z cnz"")<z ndnz"—1>,
1 1

1

na, = Z C“Vd,, y

kptv=(k+1)n

and we deduce the inequalities

| a2 < (k+ Dn 2 a2 2 v]d ]2

rS2n vS (k+1)n
m A 2/ (k+1)
2on|en | = [(1—(:)%2—;] < Au(p, B)(1 — r)—#pI D,
1 —

m

Don|da | < As(p, k)(1 — r)~telks s=k+1.

1

For r=¢7V™, we then have for an arbitrary positive integer m

m

Co = 3 1] cal? < Aa(p, Eymiricin

n=1

Son|da|? < Au(p, kymiolks, s=k41,

1

m m Cp— Co
S a2 = 3 T < Ay(p, Eymirl D for b < 4p — 1,
1 1 n

n?| a,|* < (k4 Dn-As(p, k)(2n)#/ F+0-1 A4(p, k) (k + 1 m)te/b+D;
whence
[a,| < A(p, B)n2!=1 for k< 4p — 1.

For k=4p—1 we may use the method of V. Levin* with the obvious
modifications to take care of p>1. This will give (1.4) for k=4p—1.
Thus (1.4) holds for &k <4p.

RuUTGERS UNIVERSITY

* See V. Levin, loc. cit.



