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ON THE OPERATIONAL DETERMINATION OF TWO 
DIMENSIONAL GREEN'S FUNCTIONS IN THE 

THEORY OF HEAT CONDUCTION! 

A. N. LOWAN 

1. Introduction. In a previous paper J the writer has described an 
operational method for evaluating Green's functions in the theory of 
heat conduction and illustrated the method for the case of a semi-
infinite solid. In this case the starting point was the solution of the 
differential equation of heat conduction satisfying the condition of a 
plane source. 

It is the object of this paper to illustrate the same method for the 
case of the two dimensional flow of heat, in which the starting point 
is the solution of the differential equation of heat conduction satisfy­
ing the condition for a line source. 

Specifically, we shall determine the Green's functions for the cases 
where the solid is one of the two following: 

(A) An infinite cylinder. 
(B) A solid bounded internally by a cylinder. 

In both cases we shall take the boundary condition in the form 

du 
h hu = 0 for r = a. 

dr 
From the general solution to be derived it will be easy, by making 

h = 0 or h= oo in the general solution,! to obtain the corresponding 
solutions for the two important cases where the boundary is (1) im­
pervious to heat, (2) kept at 0°. 

2. Case (A). We start with the solution 

1 ( r2 + r0
2 - 2rr0 cos (0 - 0O)) 

(1) u(r, 6, t; , . , 00) = — exp j ^ J 

which satisfies the condition for a line source at (ro, 0o). The solution 
(1) may be written in the equivalent forms 

t Presented to the Society, October 30, 1937. 
t Philosophical Magazine, (7), vol. 24 (1937), pp. 62-70. 
§ Some special cases of the problems discussed in this paper have been treated 

by S. Goldstein, Proceedings of the London Mathematical Society, (2), vol. 34 
(1932), pp. 51-88. Goldstein treats the case where the line source coincides with the 
axis of the cylinder. His boundary condition is u — 0 or du/dr—0. 
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1 f00 

(1') u(r, 0, /; roySo) = — I ae-ka2tJ0(Ra)da, 
2TTJQ 

where R2 = r2 + f0
2 — 2rr0 cos (0 — 0O), or 

1 00 / » 00 

(1") u(r,6,t',r0, 0O)= — X cos < 0 - 0O) • I ae-ka2tJn(ar)Jn(ar0)da. 
2lT n=-oo ^ 0 

The Laplace transform of (1") is 

ƒ• 0 0 

e~ptu(r, 0, t) fo, 0o)d/, 
o 

where p is a complex parameter whose real part is positive. From (1") 
we get 

1 °° 
«*(', *, ?; 'o, 0o) = — Z) cos »(0 - 0O) 

(2) 2 ^ — 

/

a 
— Jn(<xr)Jn(ar0)da} 

o a2 — a2 

where we have put p= — kq2. 
Consider the integral 

Jn{ar)H1l (ar0)da 
-oo a 2 — 

(3) 
<Z2 

— -Jn(ar)Hn
1(ar0)da+ I — -Jn{ar)H^{arQ)da 

-oo a 2 — £ « / O Ù : 2 — # 2 

In the first term make the substitution a= —j3. The integral becomes 

/

a 
— - J n ( - <xr)Hr}(- ar0)day 

o a2 — g2 

where we have used a: once more for the variable of integration. But 

/ » ( - or) = ( - l)Vn(or) 

and 

ffnK- «fo) = ( - iy{Hrt{ar0) - 2/n(ofo)]. 

Hence 
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/

,0° ada 
— Jn(ar)[H^(aro) - 2Jn(ar0)] 

o OÙ2 — q2 

/

,0° ada 
— Jn(ar)Jn(ar0), 

o a2 — g2 

whence 

J'00 ada I f 0 0 ada 
Jn(ar)Jn(ctr0) = — — -Jn{ar)H} (ar0). 

o a2 — g2 2 J_oo a2 — g2 

The last identity evidently remains valid if we interchange r and ro. 
Consider the complex integral 

x 
a d a 

Jn(ar)HJ (aro) 
c a-4 — g2 

in the case r<ro , the path of integration C consisting of the axis of 
reals and an infinite semicircle in the upper half of the ce-plane where 
the path is indented by a small semicircle around the origin. The con­
tribution to the integral tends to zero as the radius of this semicircle 
tends to zero. From the known asymptotic behavior of Jn and H} 
it is apparent that | Jn{otr) H} (ar0) | —M3 as | a\ —»co. Thus the con­
tribution to the integral from the infinite semicircle vanishes in the 
limit. Since the path C contains the single pole a = q, the application 
of Cauchy's theorem leads at once to the identityf 

ƒ• °° a d a wi 

Jn(ar0) -Jn(ar) ———- = — Jn(rq)H} (r0q), r < r0 . 
o a 2 — a2 2 

ƒ» 00 

Jn(ar) • Jn(ar0) — = ^ Jn(r0q) • Hn
x (rq), r > r0. 

o 

xda wi 

o aA — q 

In an entirely similar manner we obtain the identity 

ada iri 

a2 - q2~ 2 

With the aid of the identities (5) and (5'), (2) yields 

(6) u*(r, 0, p\ r0, e0) = — ] £ cos n(d - d0)Jn(r0q)'H^{rq), r > r0, 
*±K n==—oo 

and 

i °° 
(60 u*(r, 0, p; r0, 0O) = — ]C c o s w(# "" ô) 'Jn{rq)Hrt (r0q), r < r0. 

rt # n=—oo 

t This is one of several identities obtained by Hankel, Mathematische Annalen, 
vol. 8 (1875), pp. 453-470, by integrating a more general integrand around the 
appropriate path. 
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From (6) we get 

/du* \ i « 
l (_ /^* \ — — 2^ cos n{6 — 60) -Jn(roq) 
\dr J r=a n=—oo 

I dz ) z 

In order to obtain the Green's function we must add to the line 
source solution u a function v satisfying the differential equation of 
heat conduction and vanishing at t = 0. Its Laplace transform must 
then satisfy the differential equation 

(8) Av* + qh* = 0, 

whence 

(9) v* = — J2 An cos n(6 - do)Jn(qr). 
'T K n——oo 

From (9) we get 

/dv* \ 
( + hv* ) 

A ( d ) 
22 An cos n(0 — 6o)l q — ƒ»(«) + hJn(z) > 
,=—oo v. dZ J z=qa 

(10) 

r = a, 

4 K n=—oo 

Since 

(11) ( — + ^ ) ( ^ * + ^*) = 0 at 

it follows that 

q [—ffnK*)! +hm(aq) 

(12) ^ - ^ / . ( r e ) U * , , , ^ T * . 
qJn \aq) + hJn{aq) 

and therefore ultimately 

(13) u* + v* = — X) cos n(0 - 6>0)TFn*, 
4t/S n=—oo 

where 
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(14) UM\ 

•\——n*(z) + hn*(z)\ \ 
La dZ Jz=aq) 

and Un(aq) = qJn(aq) + hJn(aq). 
Remembering that p= —kq2, we see that the expression pW* is of 

the form Y(p)/Z(p). The transition from pW* to Wn is equivalent 
to the inversion of the Laplace transform defining Wn*, and we have 

m F ( 0 ) , ^ YM f 
(15) Wn = V ll ep<S 

Z(0) ^ M ' ( ^ ) 
the summation being extended over the roots of Z(p) = 0. We proceed 
to evaluate the second member of (15). The first term is evidently 
zero. Further 

Z(p) = Z(- kq2) = Un{aq) = qJiiaq) + hJn(aq), 

and therefore 

(16) 

But 

d d£/n ^ a ( d V z ~V\ 

dp dq dp 2kq{dzLa J) s 

|2/„"•(«> + a + «*)ƒ„(*)}.-«. 

^ d<7 ^ 2&g 

- 1 

2Jfeg 

1 / #2 \ 
(17) JJI'{Z) + — ƒ«'(*) + I 1 - - J A W = 0, 

arid from Z(p) = Un(aq) = 0 we get 

(18) —Jn{z) + *ƒ„(*) = 0 for 2 = aq. 
a 

In view of (17) and (18), (16) becomes 

(160 Z>(p)=^(h> + q>-^Jn(aq). 

In evaluating Y (pi) from (14) it is clear that the first term in 
brackets vanishes and thus 
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z d 
(19) Y (Pu = - PMq*)Jn(q<r*){— — H}(z) + hHjtfX 

\ a UZ ) z^aqi 

If we make use of the identity 

(20) Jn(z) — Hrt (z) - Hi (z) — Jn{z) = — 
dz dz TZ 

and of (18), the expression in braces in (19) becomes 

2i 

and therefore 

(190 Y(PÙ - F ( - ^ = Z Ü * MrçMroçù 
ira Jn(aqi) 

With the aid of (15), (16'), and (19') the inversion of (13) yields 

1 
G(r, 6, t ; r0> 0O) = u + v = £ cos n(6 - 0O) E q?e~k«i2t 

( 2 1 ) 

/n(g^)/n(g^o) 

( # + tf - ^ { / . ( ? « a ) } ' 

where the second summation is extended over the roots of 

(22) qJ:(aq) + hJn(aq) = 0. 

From the general solution (22) we may obtain the solution for the 
case where the boundary is impervious to heat by putting h = 0. Also 
the case where the boundary is kept at 0° may be obtained by putting 
h = oo. In this case it is clear that the transcendental equation (22) 
reduces to 

(23) Jn(aq) = 0. 

Also it is easily seen that the denominator of (2 2) becomes q2 {J I (g»a)}2. 
Thus the Green's function for the case where the boundary is kept 

at 0° is 

(24) G(r, 6, /; r0, d0) - — £ cos »(0 - 0O) £ <rW f ™ J, 
ira2 _oo q. \Jn(qa))2 

where the second summation extends over the roots of (23). 
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3. Case (B). In this case, since the solution v* must be finite for 
r =oo, and since Hrt(z)—>0 in the upper half of the s-plane, it 
follows that we must put 

(25) 

From (25) we get 

/dv* \ 
( hfe* 
\ dr / r _ 0 

v*(r, 6, p) = — £ An cos n(6 - 0O) • ff»1 (qr). 

(26) 

= - ^ - E i „ cos n(d - Oo) iq - ^ #„> (2) + hEi (*)1 . 
4& l az J j _ o s 

Also in this case, in view of (6) and (6'), we have 

(27) 

/du* \ 
I + hu* ) 
> dr /r 

= — S cos n(6 - 0O) • Hn1 (r0q) • 
4k 

)\q -rJn(z) + hJn(z)\ . 
\ dZ ) z^aq 

The condition 

(28) (— + h\ (u* + v*) = 0 for r = a 

thus yields ultimately 

(29) 

where 

(30) 

u* _|_ v* = _ £ cos n(e _ e0)w*, 

TFW* =Jn{rq)El(rvq) 

- H^(r0q)'Hr}(rq) 

q — /n(s) + *ƒ»(*) 
as 

g — Hni(«) + AJW(*) 
as 

Consider first the case h = oo. In this case 

, _ W* = / „ ( r j W (ro?) - - ^ ~ - H.1 (r«?) • tf.1 (rj) 
(31) Jï^ (aç) 

= Wii + W*2. 
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In view of (4) and (5) we have 

(32) W*x = — f o
 Œ

 o Jn(ar)Hni (aro)da # 

iriJ _oo or — q2 

It will be convenient to write Wn2 in the form of a definite integral. 
For this purpose consider the integral 

I Jn{0L0) 

c a2 — q2 Hn1 (aa) 
Hi (r0a)Hi (ra)da 

over the path C. From the asymptotic expansion of Jn(%) and Hi (z) 
it is easily seen that Hi (ra)/Hi (aa) remains finite as |ce| —>oo, and 
that Jn(aa)Hi (r0a) —>0 as | a\ —><*>. Under these conditions the con­
tribution from the large semicircle approaches zero as | a | —><x>. Fur­
thermore the zeros of Hi (z) are known to lie in the lower half of the 
2-plane. Thus the only pole of the integrand in the interior of C is 
a = q. Cauchy's theorem thus yields 

* Jn(aq) 
W% = _ , Hi (rq)Hi (r0q) 

(33) 
Hi(aq) 

I f 0 0 a Jn(aa) 

in J -y, a2 — q2 Hi (aa) 

Hi(aa) 

In view of (32) and (33) we get 

1 r°° a ( .Hi (ar0) 
W* = — f — { / „ W ^ M - Jn(*a)Hi(ar)) _ \ 'da, 

irtJ -oo p + ka2 

and therefore, finally, 

1 oo / » oo 

u + v = —J^ cosn(6 - do)- I ae~kta2 

4.T -oo J -oo 

Hi (an) 

' Hi(aa) 
\Jn(ar) • Hi (aa) — Jn(aa)Hi (ar)} da. 

This is the solution of our problem when the cylindrical surface r = a 
is kept at 0°. 

Now consider the case where h is finite. Then 

W& = { 

q — Jn(z) + hJn(z) 
dz 

q — Hn\z) + hHn\z) 
dz 

Hi(rq)Hi(rQq). 
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Consider the integral 

133 

1 r a 

iriJ c oi2 — 

a — Jniz) + hJn(z) 
dz 

dz 

H2(ra)Hl(riflL)da 

over the path C. As before it can be shown that the contribution from 
the large semicircle tends to zero as | a | —>oo. We now assume that 
the zeros of qdHn

l(z)/dz+hHn}(z) lie in the lower half plane. The 
Cauchy integral theorem leads to the identity 

1 T00 a 

7TW _oo a2 — 

Oi — Jn(z) + hJn{z) 
dz 

a — HJiz) + HHKz) 
dz 

} Hi(ra)Hl(rifiL)da= W% 

whence our final solution becomes 

1 °° 
G = u + v = — ^ cos n(d — d0) 

47T „=-00 

f ae~ -kaît 
Ht (an) 

Un(aa) 
{jn(ar)Un(cia) — Un(ar)Jn(aa)}da, 

where 

Un(aa) = ia—H*® + hJn(z)\ . 
I dz ) e==aa 

For h =oo this solution yields our previous solution (21), as it 
should. 

We have assumed above that there are no zeros of Un(aoL) in the 
interior of the path C. Briefly this can be shown by evaluating the 
integral 

• d 
-Un(z) 
h 

dz 
2iri / c Un(z) 

1 r. 
which, as is well known, represents the number of zeros of Un(z). 
Using the asymptotic expansion of H}{z)) we find that the value of 
the above integral is equal to zero. 
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