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AN APPLICATION OF SCHLÀFLPS MODULAR EQUATION 
TO A CONJECTURE OF RAMANUJANf 

D. H. LEHMER 

In 1918 RamanujanJ made the following conjecture: 
If ç = 5, 7, or 11, and if 24^ — 1 is divisible by q01, then the number 

p(n) of unrestricted partitions of n is divisible by qa. 
Ramanujan himself proved this conjecture to be true in casej 

qa = S, 7, 52, and 72, and also§ for qa=ll and l l 2 . It has since been 
proved|| for qa = 5d. Some modification of the conjecture is necessary, 
however, since, as Chowla^f was first to notice, it fails for qa = 7s. 
In fact, since 24 • 243 — 1 = 5831 is divisible by 73, it would follow from 
the conjecture that ^(243) is also divisible by 73. However, Gupta's 
table** of p(n) gives 

^(243) = 13397 82593 44888, 

a number t t which is not divisible by 73. It occurred to the writer that 
it would be worth while making an investigation of £(599) and £(721) 
relative to their divisibility by 54 and l l 3 respectively. $î To obtain 
the value of p(n) for these isolated values of n beyond the limits of 
then existing tables, use was made of the celebrated Hardy-Ramanu-
jan series,§§ which may be written 

( 1 2 ) l / 2 N 

/x(24^ - 1) k=i 

where we have written /x for T(24n —1)1/2/6. By taking iV=18 for 
n = 599, and iV = 21 for n = 721, values were obtained for the series in 

t Presented to the Society, September 10, 1937. 
t Proceedings of the London Mathematical Society, vol. 19 (1919), pp. 207-210; 

Collected Papers, pp. 210-213. 
§ Mathematische Zeitschrift, vol. 9 (1921), pp. 147-153; Collected Papers, pp. 

232-238. A proof for I P is in one of his notebooks. 
|| See Bulletin of the Academy of Sciences, U.R.S.S., 1933, ro . 6, pp. 763-800. 
% Journal of the London Mathematical Society, vol. 9 (1934), p. 247. 
** Proceedings of the London Mathematical Society, (2), vol. 39 (1935), p. 149. 
t t This number has been verified by the present writer. 
i t Journal of the London Mathematical Society, vol. 11 (1936), pp. 114-118. 
§§ Proceedings of the London Mathematical Society, (2), vol. 17 (1918), pp. 75 -

115. Ramanujan's Collected Papers, pp. 276-309. 
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(1) which differed from integers by only .00027 and .00041. Moreover, 
these integers were divisible by S4 and l l 3 as predicted by the con­
jecture. Still it could not be concluded that these integers were 
actually £(599) and £(721) since nothing was known about rn(N) at 
that time beyond the result of Hardy and Ramanujan that, if a>0, 

fnian1'2) = 0(n~liA). 

This uncertainty has since been removed in two ways. In the first 
place Guptaf has extended his table of p(n) to £(600) and finds the 
writer's value for £(599); he confirms £(721) with respect to the 
modulus 247. On the other hand, RademacherJ has recently proved 
that if {ix-k)elxlk is replaced by (fx-k)e^lk + (fx + k)e~'x/k in (1), we ob­
tain a convergent series for p(n). With this important fact established 
it is possible to give an estimate for the remainder rn(N) and thus 
the application of the Hardy-Ramanujan series for any particular n 
is put on a firm basis. 

The application of (1) for large values of n was now beset with a 
further difficulty, namely, that of evaluating the coefficients A£(n), 
These numbers are usually written Ak(n)lkxn, where the Au(n) are 
complicated sums of 24&th roots of unity arising from the theory of 
elliptic modular functions. The approximate values of Ak{n) for all n 
and for &^20 have been tabulated! by the writer. For large n, how­
ever, the series (1) demands more accuracy in the first few -4*'s, and 
of course additional ^4*'s. To meet this problem the writer has made 
a special investigation|| of Akin), and has obtained the unexpected 
result that Ak*(n) is merely a power of 2 times a cosine of a rational 
multiple of 7T. As a consequence, if k is small, Ak(n) is a root of a well 
known algebraic equation of low degree with integer coefficients, so 
that Ak* may be easily found with the high degree of accuracy de­
manded of the first few -4*'s, while if k is large, Ak*(n) may be" ob­
tained from any standard table of natural cosines. 

Another consequence is of importance to the estimation of the re­
mainder rn(N). In fact Ak*(n) turns out to be much smaller than 
might be expected. A priori one has as a trivial estimate 

t Proceedings of the Indian Academy of Sciences, vol. 4 (1936), pp. 625-629. 
His extended table is in Proceedings of the London Mathematical Society, vol. 42 
(1937), pp. 547-549. 

t Proceedings of the London Mathematical Society, (2), vol. 43 (1937), pp. 241-
254. 

§ Journal of the London Mathematical Society, vol. 11 (1936), pp. 117-118. 
(Erratum. For Azoin) read Â2o(n-\-S).) 

|| To appear in the Transactions of this Society. 
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\A?(n)\ ^ &1/2. 

One may now prove for example that f 

\Af{fi)\ < 2k"\ 

Using this estimate one may prove that 

, , TTW7/3 ( ix M3 / N \ ) 

<2> I '•<*> I < lT7v { s i n h ^ + ^ + ( 1 + 7 ) (•+fc."W-'«)} , 
a result which is by no means the best possible. 

In the application of the Hardy-Ramanujan series there remains 
only the difficulty of computing 6". Even when /x is only moderately 
large the use of the series for e» is too laborious and risky to be recom­
mended. If fj, is not too large, it is possible to evaluate e» by means of 
tables of very accurate logarithms such as Wolfram's 48 figure 
natural logarithms or Sharp's 61 figure common logarithms. J This 
may be done by finding, by continued fractions, an approximation 
£ to e» so that 

& = £(1 ± €) 

and such that log £ is a simple combination of tabulated logarithms. 
Thence 

log (1 ± e) = M - log E = ±8 

may be found and will be quite small if £ is a good enough approxi­
mation. I t follows that 

/ 52 ô3 \ 
e» = Ee±5 = £ ( 1 + Ô H + — H ), 

\ ~ 2! " 3! / 
where the series converges rapidly. This method of computation, 
which frequently involves the use of a factor table, was a favorite 
with Gauss. § 

An entirely different method of computing e» is afforded by the 

f Or indeed even better results than Ak*(n) =0(we)-
t These tables are reprinted in several places such as Callet's Tables Portatives, 

or Peter 's Zehnstellige Logarithmen. For complete information see Henderson, 
Bibliotheca Tabular urn Mathematicarum, vol. 1, part A (Tracts for Computers, no. 13), 
Cambridge, 1926, pp. 195, 204. 

§ See for instance his Werke, I I I , pp. 426-432. The fact that many typographical 
errors exist in the several reprints of the above mentioned tables of logarithms makes 
it desirable to use two different values of E and thus to make two independent 
calculations. 
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theory of elliptic modular functions. The fact that these functions 
are of practical use in evaluating special exponentials of the type 
exp [xP1/2] appears to have been noticed first by H ermite f and later 
by Kronecker.J This same fact was rediscovered by Ramanujan§ in 
an early paper. In the present paper we give a modification of this 
method to the special problem at hand and give the results of apply­
ing it to the calculation of p(n) for ^ = 1224, 2052, 2474, and 14031. 

In this method we use to the fullest advantage the fact that 
JU = 7T(24^ —l)1/2/6 is of the form wmpll2/6 where m is a power of 
5, 7, or 11, in view of the hypothesis of Ramanujan's conjecture. 

In the notation of Weber, || the class-invariants ƒ and ƒi are defined 
by 

(3) ƒ ( ( - DY'*) = exp [xZ»/724]f[ (1 + exp [ - (2k - 1 ) T D » * ] ) , 
k=l 

00 

(4) ƒ ! ( ( - DY'2) = exp [7rZ)1/2/24]II (1 - exp [ - (2k - l)irZ>*'*]). 

Each class-invariant is the root of an algebraic equation with integer 
coefficients solvable in radicals. The feature of this method is the 
exploitation of the algebraic character of ƒ a n d / i . The derivation of 
the equation for ƒ o r / i in case D is large and arbitrary is a difficult 
matter. In case the number of classes of binary quadratic forms of 
determinant — D is fairly small, however, the equations can be found 
rather easily, and in many cases the expressions for ƒ and / i in radicals 
are not difficult either. These equations have been given^ for a large 
number of values of D. In case D contains a square factor D = s2D't 
it is particularly simple to derive the equations for f(( — D)112) or 
M - D ) 1 ' 2 ) from the equation for ƒ((-£>')x '2) or / 1 ( ( - D , ) 1 / 2 ) by 
means of the so-called SchlâfiTs modular equation** of order j as 

t Comptes Rendus, vol. 48 (1859), pp. 1101-1102; vol. 49 (1860), p. 18. 
t Monatsberichte, Akademie der Wissenschaften, Berlin, 1863, p. 44. 
§ Modular equations and approximations to x, Quarterly Journal of Mathematics, 

vol. 45 (1914), p. 354. Collected Papers, pp. 25-26. 
|| Elliptische Functionen und Algebraische Zahlen, Braunschweig, 1891. 
*h Weber, loc. cit., pp. 499-504. Ramanujan, Quarterly Journal of Mathematics, 

vol. 45 (1914), pp. 350-372; Collected Papers, pp. 23-39. G. N. Watson, Quarterly 
Journal of Mathematics, vol. 3 (1932), pp. 81-98 and 189-212; Proceedings of the 
London Mathematical Society, (2), vol. 40 (1936), pp. 83-142; Acta Arithmetica, 
vol. 1 (1936), pp. 284-323; Proceedings of the London Mathematical Society, (2), 
vol. 42 (1937), p. 377. 

** Schlâfli, Journal für Mathematik, vol. 72 (1870), pp. 360-369; Weber, loc. cit., 
pp. 267-274; Berry, American Journal of Mathematics, vol. 30 (1908), pp. 156-159; 
Watson, Journal für Mathematik, vol. 169 (1933), pp. 238-251. 
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illustrated below. These transformation equations have been worked 
out for the first dozen prime values of s as well as for 5 = 9,25, and 49. 
For our purposes the most important cases are ^ = 5, 7, 11, 25, and 49. 

The general plan is then as follows. Given n such that 24^ — 1 con­
tains qa, select a divisor D of 24n — 1 such that (24n — 1)/D is a square 
= 1. Also D should be chosen large enough to make the infinite 
products (3) and (4) rapidly convergent and small enough so that 
either ƒ(( — £>)1/2) or ƒ](( — D)112) is readily found either from tables or 
from one or more applications of Schlafli's modular equation of order 
p or p2 to equations already tabulated. Having found this equation 
we solve it approximately to as many significant figures as are re­
quired of eM. Knowing the left member of either (3) or (4), we easily 
solve for exp [7rZ)1/2/24], an integer power of which is #*• 

We illustrate the procedure with the example of n = 14031; in this 
case 24^—1 = l l 4 • 23. Selecting £> = l l 2 -23 , we first find the modular 
equation for ƒ(11 ( - 23)1/2). We start however with ƒ(( - 23)1/2). If we 
set 

(5) ƒ ( ( - 23)^) = 2"*x, 

then f 

(6) xz - x - 1 = 0. 

If now we set 

-(f),+(f)' • > ƒ ( ! ! ( - 23)1'2) = 2" 'y , A = ( - ) + ( - ) , 5 = 2 * 3 , - — 
y / \x / xy 

then the Schlâfli modular equation of the 11th order is J 

A - Bb + B* + IB = 0, 

or, in terms of x and y, 

y12 - 32(xy)n + SS(xy)9 - 8 8 ( ^ ) 7 + 4 4 ( ^ ) 5 

— 11(*^)3 + xy + xu = 0. 

To obtain the equation satisfied by y, we must eliminate x between 
(6) and (7). The easiest way to do this is to write (7) with x = Xi, x^ X3, 
where these are approximate roots of (6), and to multiply these 
equations together. Although only approximate values of x are used, 
the exact integral coefficients of the various powers of y are un­
mistakably recognized. Thus we readily find thaty =jf(ll( — 23)1/2)/2 l /2 

satisfies 

t Weber, loc. cit., p. 500. 
t Weber, loc. cit., p. 273. 
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y™ - 7 0 4 / 5 - 1024)/34 - 31712)/33 + 36608;y32 + 89496/1 

- 654723;30 - 225060/9 + 18304)/28 + 343519/7 + 32384)/26 

- 366080;y25 - 29051/ 4 + 316096;y23 + 10120/2 - 236808/1 

(8) - 4356/° + 156816/9 + 17622/8 - 91080/7 - 17578/6 

+ 47047/ 5 + 8095 / 4 - 18975/3 - 2 3 0 / 2 + 5752/ 1 - 1 1 1 1 / 

- 176/ - 143/ + 396/ - 6 6 / - 5 5 / + 7 8 / + 2 2 / 

- y + 1 = 0. 
A preliminary reconnaissance shows that the largest root is more 

than 100 times as large as the absolute value of any other root, so 
the root squaring method of Dandelin and Graeffe is an especially 
good method to use in finding this largest root. Moreover, it is not 
with y but rather with / , yB, ylQ, and / 2 that we are concerned, as 
the following argument shows. In fact, since ju = 7rll2(23)1/2/6, we ob­
tain from (8), with £> = l l 2 -23 , 

/ 4 ( 1 1 ( - 23)1'2) = 4 / 

= e^n(l + exp [ - 11TT(23)1/2])4(1 + exp [ - 33TT(23)1/2])4 • • • 

from which 

e» = ( 4 / ) n ( l + exp [ - 11TT(23)1 /2])-4 4 • • • 

= 4 n / 4 ( l - 44 exp [ - 11TT(23)1/2] + • • • ) • 

Therefore 

exp [ - 11TT(23)1/2] = er*»'n = 4~Qy~u + • • • . 

Substituting this in (9) we have 

eju _ 411^44 _ 44.45^20 + . . . 

or 

(10) e" = 4 1 9 4 3 0 4 / / / 2 - 4 5 0 5 6 / / 6 + • • • . 

Now the sum of the 128th powers of the roots of (8) differs from / 2 8 

by a negligible amount. Applying the root squaring method 7 times 
(retaining only such coefficients as are required), we find 5i28, and 
by taking successive square roots we obtain the powers of y needed 
in (10). Thus we find 

e* = 90 55985 87059 70450 84877 28959 00188 79038 39298 26173 
19183 33361 28658 25306 34561 94199 90989 58100 30392 
77156 94755 49177 19559 23783 93967 06869 92162.896. 
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In conclusion we give the results of applying the Hardy-Ramanu-
jan series for p{n) when n = 1224, 2052, 2474, and 14031. If we denote 
by Sn(N) the sum of the first N terms of the series, so that 

p(n) =Sn(N) + rn(N), 

we find that 

1 09765 80560 41816 32042 44403 44269 05625.00262, 

20 25018 07589 97203 96101 85629 65051 51746 
73735 63574.00612, 

14 86398 21708 90271 21199 41978 56277 70438 
51222 84071 75000.00325, 

92 85303 04759 09931 69434 85156 67127 75089 
29160 56358 46500 54568 28164 58081 50403 
46756 75123 95895 59113 47418 88383 22063 
43272 91599 91345 00745.00016. 

If we take the greatest integers in these S"s, it is found that the re­
sulting numbers are divisible by the proper powers of 5 and 11 to 
verify Ramanujan's conjecture. Since this conjecture has been proved 
for qa = ll2 and 53, it follows that these greatest integers are either 
true values of the partition function or else differ from such values by 
multiples of 121 or 125. It follows from (2), however, that this second 
alternative is impossible since the values of | rn(N)\ are in all cases 
found to be less than unity. We have therefore established the follow­
ing facts, all of which are in accord with the conjecture of Ramanu-
jan: 

£(1224) is divisible by 54, 
£(2052) is divisible by l l 3 , 
£(2474) is divisible by 55, 
£(14031) is divisible by l l 4 . 

In no case is the number of partitions divisible by a higher power of 
5 or 11 than that indicated. 

•Si224(16) 

S 2 062(19) 

*S2474(26) 

5l403l(62) 
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