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POSTULATES FOR BOOLEAN ALGEBRA IN 
T E R M S OF TERNARY REJECTION* 

BY ALBERT WHITEMANf 

1. Introduction. The operation of ternary rejection {in Boolean 
algebra is the operation ( ) given by (abc) = a'b' + b'c'-\-c'a'. In 
this paper, I shall present a set of postulates for Boolean alge­
bras in which ternary rejection is taken as the only primitive 
idea, besides that of class. As a result, all the special Boolean 
elements are introduced with an elegance not possible in any 
other set known to the author. Thus, the negative of an element 
is defined in terms of the primitive ideas, and then any two 
contradictory elements are chosen to represent the zero element 
and the universe element of the resulting Boolean algebra. 

We prove the sufficiency of the new postulates for Boolean 
algebra by deriving from them the well known Whitehead-
Huntington set;§ the proof of necessariness consists in the con­
verse derivation. Finally, we establish the consistency and inde­
pendence of the postulates by furnishing proof-systems of the 
usual type. 

2. The New Postulates. The new postulates have as undefined 
ideas a class K and a ternary operation ( ). The postulates are 
the propositions A1-A5 below. In Postulates A3-A5 the condition 
if the elements involved and their indicated combinations belong 
to K is to be understood. 

POSTULATE AI . K contains at least two distinct elements. 

POSTULATE A2. If a, b, c are elements of K, (abc) is an element 
ofK. 

* Presented to the Society, December 31, 1936. 
f Harrison Scholar in Mathematics, University of Pennsylvania. 
% For other papers dealing with ternary operations see A. B. Kempe, On the 

relation between the logical theory of classes and the geometrical theory of pointst 

Proceedings of the London Mathematical Society, (1), vol. 21 (1890), pp. 147— 
182; Orrin Frink, The operations of Boolean algebras, Annals of Mathematics, 
(2), vol. 27 (1925-1926), pp. 477-490; see also the bibliography at the end of 
Frink's paper. 

§ See the Transactions of this Society, vol. 5 (1904), pp. 288-309. 
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POSTULATE A3. {abc) = (bca). 

DEFINITION 1. a' = (aaa). 

POSTULATE A4. (a'bb') =a. 

POSTULATE A5.* [ab(cde)'] = [(abc)'(abd)'e]. 

3. Theorems. We now list a number of theorems of the re­
sulting algebra. 

1. a"= a, where a"= (a,)/. 
2. (aab)=af. 
3. (abc) = (acb). 
4. (abc) = (cba) = (bca) = (acb) = (cab) = (bac). 
5. [a'(abcy(a'b'c'y]=a. 
6. [a(abcy(ab'c')']=a'. 
7. (abc) = [(abdY(abd')'cl 
8. [df(abc)f(afbfcfy]^d. 
9. If (a'bc) =a for all a, then c = bf. 

10. (abc)f = (afb,cf). 

4. Proofs of the Preceding Theorems. 

PROOF OF 1. a" = (a"ra'a") = (ara!,a,n) =a, by A4, As, A4. 

PROOF OF 2. (aab) =[(abbf),(abbf),b]= [ab(bfb,b)/] = (abbf) 
= a', by A4, 1, A5, A4, 1, A4, 1. 

PROOF OF 3.f Put (acb)f=d, [c(abc)fb]f = e. Then 

(abc) = [ab(ccd)f] = [ab(cdc)'] = [(abc)'(abd)f c] = [c(abcY(abd)f] 

= {[c(abc)fa\[c(abc)rb\d} = {[c(abc)'a\ed) = {[ac{abc)']'ed) 

= {[(acay(acb)'c]'ed) = {[(aac)f(acb)fc}'ed) = { [a(ac&)'c]'ajj 

= {Mac&)'] '«*} = {[(caa)f(cac)fb]fed} = {[(aacy(cac)fb\ed} 

= {[a(cac)'&]W} = {[a(^a) '6 ]W} = [(ac&)'«J] = [d(acb)fe] 

= { ( ^ ' ( ^ ' K a k ) ^ ] ' } = (ac6), by 2, 1, A3, A5, A3, A5, A3, 

A6, A3, 2, 1, A8, A5, As, 2, 1, A3, 2, 1, A3, 2, 1. 

PROOF OF 4. By A3, 3. 

* We shall use the symbols ( ), [ ], { } interchangeably to denote the 
fundamental ternary operation. 

f I am indebted to H. S, Zuckerman for this proof. 
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In the rest of the proofs implicit use will be made of 1 and 4. 

PROOF OF 5. [a'{abc)'{a'b'c')'\ = { [a'{abc)'a'\'[a'{abc)'b'\c'} 

= \a'[a'b'(abc)'\'c') = {a'[{a'b'a)'(a'b'b)'c\'c'} = [a'c'(b'a'c)'] 

= [(a'c'a')'(a'c'c)'b'} = [a'(a'c'c)'b'} = (a'a'b') = a, by A., 2, 

A5, A4, A5, 2, A4, 2 . 

PROOF OF 6. [a(abc)'(ab'c')'] = {[a(abc)'o]'[a(abcyb']'c'} 

= {a[ab'(dbcy]'c') = {ac'[(ab'a)'(ab'byc]'} = {acf[a(abfb)fc]f} 

= [ac'(aac)'] = {ac'a) = a', by A5, 2, A5, 2, A4, 2, 2. 

PROOF OF 7. (afo) - [ab(dd'c)'] = [ ( a ^ ) ' ( a ^ O ^ ] , by A4, A5. 

PROOF OF 8. Put (abdy = p, {abd')' = q, (a'b'd)' = r, (a'b'd'y = s. 

Then 

[d'{abcy(a'b'c'y]= [d'(pqc)'(rsc'y]= { [d'r(pqcy]'[d's(pqcy]'c'} 

= { [{d'rpyid'rqycWid'spyid'sqycyc'}, 
by 7, A5, A5. But {d'rq) =d, (dfsp) =d by 5, and (^^g) =d by 6. 
Hence the last expression reduces to 

{ [cd\dfrpy\\cd'dyc') = {c'd'[cd\d'rpy]'} = [(c'd'cy(c'd'd'y(d'rpy] 

= [d /(c /d ,d ,) /(d /r^) /]= [ d ' d ^ d V ^ ' l - d , by 2, A5, A4, 2, 2. 

PROOF OF 9. Suppose that for two fixed elements b, c, (a'bc) =a 
for every element a. Then for a = c, c = (c'6c) = J' by A4. 

PROOF OF 10. By 8, 9. 

5. Sufficiency and Necessariness of the Postulates. The White-
head-Huntington postulates leave undefined a class K and 
two binary operations + and X, and are the propositions 
la, lb, •• - , VI below. In postulates I l la-IVb the condition 
if the elements involved and their indicated combinations belong 
io K is understood ; in V the condition if the elements Z and u of 
l ia and l ib exist and are unique is understood. 

POSTULATE la. a + b is in K whenever a and b are in K. 

POSTULATE lb. ab is in K whenever a and b are in K. 

POSTULATE Ha. There is an element Z such that a-\-Z = a for 
every element a. 
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POSTULATE l i b . There is an element u such that au = a for 
every element a. 

POSTULATE I l i a . a+b = b+a. 

POSTULATE 11 lb. ab = ba. 

POSTULATE IVa. a + bc= (a + b)(a + c). 

POSTULATE IVb. a(b+c) =ab+ac. 

POSTULATE V. For every element a there is an element â such 
that a + a = u and aa = Z. 

POSTULATE VI. There are at least two elements, a and b, in K 
such that a^b. 

We deduce Ia-VI from our postulates as follows: 
Let u be any element in K. Then we may make the following 

definitions: 

DEFINITION 2. Z = u'. 

DEFINITION 3. a + b = {abu)'. 

DEFINITION 4. ab = (abZ)'. 

PROOF OF la. By Definition 3, A2, Definition 1. 

PROOF OF lb. By Definition 4, A2, Definition 1. 

PROOF OF l ia . a+Z = (aZu)' = (aufu)' = a, by Definition 3, 
Definition 2, A4. 

PROOF OF l i b . au = (auZ)f = (auu')' = a, by Definition 4, Defi­
nition 2, A4. 

PROOF OF I l ia . a + b = (abu)'= (bau)'-=b+a, by Definition 3. 

PROOF OF I l l b . ab = (abZ)' = (baZ)' = ba, by Definition 4. 

PROOF OF IVa. a + be = [a(bcZ)'u]' = [{abu)'{acu)rZ\ 
= (a + b)(a + c), by Definition 3, Definition 4, A5, Definition 3, 
Definition 4. 

PROOF OF IVb. a(b + c) = [a{bcuYZ\ = \{abZ)'{acZ)'u\ 
= ab+ac, by Definition 3, Definition 4, A5, Definition 3, Defini­
tion 4t 
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PROOF OF V. a + a' = (aa'u)' = u> by Definition 3, A4. 
aa' = (aafZ)' = Z, by Definition 4, A4. Hence a' = a. 

PROOF OF VI. By Ai. 

In the converse derivation we may of course assume all the 
theorems of Boolean algebra, since they follow from the White-
head-Huntington postulates. Postulates A1-A5 may then be veri­
fied without any difficulty after defining {abc) by a'b' + b'c' + c'a'. 

6. Relation between Ternary and Binary Boolean Algebra. 
Derivation of DeMorgan's Formula. We first prove the funda­
mental relation (abc) =afb'-\-bfc'-{-c'a'. 

PROOF, (abc) = (a ' i 'c ') ' = [(afb,zy(a,b,Zfyc,\ 
= { {Z,(a,b,Z)fZ'\(a,b,Z,),c,),= { [Z'(afbfZ),Z}f{afb,(ZZfZy\c,}f 

= { [Z,(a,bfZ)fZ],[Zf(afb,Z),(afbfZ,)f]fc,}f 

= {Zf(afbfZy[Z(afb,Zfyc,\},= {Z,(a'b,Zy[(Zcrafy(ZcfbfyZ,],}f 

= {(a'b'Z)'[(b'c'Z)'(c'a'Z)'u]'u}'=a'b' + b'c'+c'a', by 10, 7, A4, 
2, A5, A5, A5, and Definitions 2, 3, and 4. 

We next observe that 10 is a generalization of DeMorgan's 
formula. Indeed, 

(a + b)f = (abu) = (a'b'u'y = (a'b'Z)' = a'b'. 

7. Consistency and Independence of the Postulates. 
The consistency of postulates A1-A5 is shown by the following 

example. 

EXAMPLE 1.0. K = l, 2. 
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The independence proofs follow. 

EXAMPLE 1,1. K = l. 
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EXAMPLE 1.2. K = l, 2. 
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EXAMPLE 1.3. 2£ = 1, 2. 
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Postulate A3 fails for a = 2, & = c = 1. 

EXAMPLE 1.4. 2£ = 1, 2. 
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Postulate A4 fails for a = 2, 6 = c = 1. 

EXAMPLE 1.5.* JKT = 1, 2. 
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Postulate A5 fails for a = c = l, b=d = e = 2. 

T H E UNIVERSITY OF PENNSYLVANIA 

* The following alternate proof-systems, due in part to J . C. C. McKinsey, 
are of interest. Ex. 1.0. i£ = l, 2; (abc) = [(a+b+c)(a+b+c+l)/2](mod 2). 
Ex. l.l.K = l;(abc) = LEx. 1.2. iC = l, 2; (a&c) = 3 . Ex. 1.3. JK>1, 2; (a&c)=a. 
Ex. 1.4. 2 5 > 1 , 2; (a6c) = l . Ex. 1.5. 2£ = 1, 2; (a6c) = [a+b+c](mod 2). A5 fails 
for a = c=d = e = l, & = 2. 


