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AN APPLICATION OF DERIVATIVES OF NON-
ANALYTIC FUNCTIONS IN PLANE 

STRESS PROBLEMS* 

BY V. P. JENSEN AND D. L. HOLL 

1. The Plane Stress Problem. A plane state of stress is defined 
in a region in the xy plane by an Airy's stress function F(xy y), 
where F satisfies 

(1) vW(x, y) = V*VW = V\FXX + Fyy) = 0. 

The normal stresses crx and ay in the directions of x and y, re­
spectively, and the corresponding shearing stress rxy are ob­
tained from F when no body forces are present by the following : f 

\Z) dx = Fyy, CTy = r xx) Txy == F xy 

Equilibrium conditions show that the stress tensor at any 
point may be referred to any set of orthogonal planes by the 
relations 

Gx I &y & x — ffy 
crx', Cy' = ± cos 2d ± rxy s in 2d, 

(3) 
CTy (TX 

Tx>y> = sin 2d + Txy cos 26, 

where the x'y' axes have been rotated through the positive angle 
6 from the xy axes. 

2. The Stress Circle and Kasner's Derivative Circle. A graphical 
construction due to Mohr J is frequently employed in place of 
equations (3). In the complex plane y = (X+iry describe a circle 
having its center on the a axis and passing through the points 
{(Txy TXy) and (<ry, —Txy) which are designated respectively as 
points C and E. Then, corresponding to a counter-clockwise ro-

* Presented to the Society, November 28, 1936. 
t Subscripts on F denote partial derivatives with respect to the indicated 

variables. The subscripts on the stresses a and r refer to directions along which 
the stresses act. 

t O. Mohr, Abhandlungen aus dem Geblete der Technische Mechanik, 2d 
edition, 1914. 
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tation 6 of the x and y axes, the diameter CE rotates clockwise 
through an angle 20 into a new position C'E'. The points C' and 
Ef then have the new coordinates (ov, TX'V>) and (oy, — r*'»') de­
fined in (3). 

For every point in a stressed region there exists a Mohr's 
dyadic stress circle which describes the complete state of stress 
at that point. One observes that as 6 varies in the xy plane, a 
characteristic point E in the y plane moves around the circle 
at twice the rate at which 6 changes and in the opposite sense. 

I t may be recalled that the property ascribed to E is identical 
with that given by Kasner* for 7, where 7 is defined as the direc­
tional derivative of a non-analytic function of a complex varia­
ble. The circle described by 7 has been called by Hedrickf the 
Kasner circle. Through the similarity of properties of the Kasner 
circle for the directional derivative and of Mohr's circle for a 
state of stress, one is led to seek the function of a complex 
variable which will lead through its directional derivatives to a 
family of Mohr's circles. 

3. Properties of the H(z, z) Function. Let the Airy's function 
F(x, y) be written 

(4) F(x, y)=F (—•, Z-ZJ>^ = F{Zj g). 

Equations (1) and (2) become 

(5) Fzzu = 0, 

(6) ax, (Ty = 2Fgi T (Fzz + Fa), rxy = — i(Fzz — Fzz) . 

Let the function H and its directional derivative be defined by 

(7) H(z,z) =2FS, 

(8) y H = H. + Hze~™ = - ~ - I ^—! + irxy) <r™. 

It is evident from (8) that y H represents the point E' on 
MohrJs circle and that the congruence of Kasner circles for the 

* Kasner, Science, vol. 66 (1927), pp. 581-582. 
f E. R. Hedrick, Non-analytic functions of a complex variable, this Bulletin, 

vol. 39 (1933). 



258 V. P. JENSEN AND D. L. HOLL [April, 

function H is identical with the family of Mohr's circles for the 
stresses defined by F. Furthermore, the principal directions and 
characteristic curves, as defined for the non-analytic function H, 
coincide respectively with the directions of the principal stresses 
and the stress trajectories in the stress field of F. 

The significance of 7#, determined graphically from (8), may 
also be determined algebraically by solving (3) for ax, <ry, and 
Txy in terms of <sx>, GV>, and Tx>y>. Substituting these results in (8), 
one obtains the relations 

(9) y H = o-y' — irx>y', iyH = 7 m = rx>y* + i<jy>. 

The following properties are immediately deducible : 
A. The directional derivative of iH, taken tangent to any arc, is 

the resultant unit stress acting upon that arc. 
B. The directional derivative of H, taken tangent to a stress tra­

jectory, is real) conversely, if it is real the arc is acted upon by nor­
mal stresses only. 

C. The directional derivative of H, taken tangent to a stres s -
free boundary, vanishes everywhere along that boundary. 

These properties are useful in discussing the nature of stresses 
on curvilinear boundaries. Furthermore, there is a physical rea­
son for taking the directional derivatives of second and higher 
orders in such a manner that the slope of the curve of approach 
remains constant at any point while the order of the derivative 
increases. As pointed out by Hedrick,* this is only one of the 
possible choices of a definition for derivatives of second and 
higher orders. 

4. Application to Conformai Mapping. Let a given region in 
the complex plane w = u-\-iv, having stresses defined by an 
Airy's function ïï(w, w), be mapped conformally into a region 
in the z plane by 

(10) z = g(w), with h = 
dz 

dw 
= (g'g')m, and g, = -Y~, 

dw 

and where g' is formed from g' by replacing i by —i. At a given 
point w = W\ on the boundary of the stressed region in the w 
plane, let the tangent to the boundary make an angle 0i with 

Loc. cit. 
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the line v = constant drawn through w\. When the point w\ maps 
into Zi, the tangent to the new boundary at Z\ makes an angle 
6 = 61 + 82 with the line y = constant. Since the mapping is con-
formal, 82 is the angle between the line y = constant and the 
tangent at z\ to the mapped arc of v = constant. Then 

(11) g' = he*: 

If the original boundary is free from stress, then condition C 
applies in the w plane and may be written 

(12) 7 ^ = $Ww + $wwe~2idi = 0 . 

Since both the real and imaginary parts of (12) must be zero, 
the difference of the real and imaginary parts becomes 

Multiplication of (12) and (13) by e~~2idl yields two similar re­
strictions on # at the stress-free boundary. 

As an illustration of the use of the foregoing, consider 
Michell's* problem of the inversion of a field of stress. The map­
ping function is 

(14) zw = 1, 

with the additional relation that the new stress function, F(z, z), 
applicable to the new region in the z plane is given by 

/ l 1 \ 
(15) F(z, z) = zzïï ( — ; —J = zz$(w, w). 

\z z / 
By means of the non-analytic functions 

H = 2FS, and 3C = 2fe, 

the results of Michell may be obtained, namely, a stress-free 
boundary maps into a boundary acted upon by a constant nor­
mal stress, and stress trajectories map into stress trajectories. 

The directional derivative of iJ, taken along a boundary in 
the z plane, is 

* J. H. Michell, The inversion of plane stress, Proceedings of the London 
Mathematical Society, vol. 34 (1901). 
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2 r l l _2ie "i 

h\_ w w J 

= 2 ( - $ + w ^ + w&z) - — 75c 

This equation is obtained by using (14), (15) and the operators 

h2Fe2 = F„ 5 , (g')*F„ = g'F w - g"F5 . 

From the boundary condition (12), equation (16) yields 

(17) Y# = 2(— # + WÊFU, + wfö») = a real function, 

since # is real. Therefore, from the condition B, the boundary 
is acted upon by normal stresses only. 

To determine the nature of the normal stresses on the new-
boundary, one finds the directional derivative of (17) along the 
boundary to be 

2WW2($WÜ + fhtwer2i0i) = 0. 

Equation (18) is obtained from (17) by transforming from the 
independent variables z and z to w and w. The boundary con­
ditions similar to (12) and (13) show that the directional deriva­
tive vanishes on the boundary, and thus the normal stresses 
which act upon the transformed boundary must be constant. 

In the w plane let 0i now designate the angle between the 
u axis and the tangent to a stress trajectory at any point wy 
within the stressed region. Then, by condition B, the directional 
derivative of 3C along the stress trajectory, Y3c]0=0i '1S real; hence, 
by (16), at any point Z\ on the mapped trajectory, the direc­
tional derivative, ^H\^X^V is also real. Therefore, by the second 
part of condition B, the original stress trajectories map into 
stress trajectories for the new stress field. 

7H 
}e=ei+d2 

(16) 

(18) 

dyHl 

dZ j0==014-02 
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