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ON RATIONAL AUTOMORPHS OF BINARY 
QUADRATIC FORMS* 

BY GORDON PALL 

1. Introduction. We consider in this paper those rational auto-
morphs which carry an integral solution (x, y) of 

(1) ax2 + bxy + cy2 = n 

into an integral solution. Further properties are treated in §§6, 7. 
By classical methods for finding all algebraic automorphs, and 

expressing the conditions for the coefficients to be rational, we 
have the following known result. 

THEOREM 1. The general proper rational automorph (of de­
terminant 1) of a primitive form ƒ'= [a, b, c] of non-zero discrimi­
nant d = b2 — 4:ac is 

/(t - bu)/2 - eu \ 

(2) A = r ' y 
\ au (t + bu)/2/ 

and the general improper rational automorph (of determinant — 1) 
is 

/(t - 6M)/2 (b/a)(t - bu)/2 + cu\ 

\ au — (t — bu)/2 / ' 

where t, u range over all rational solutions of 

(4) t2 - du2 = 4. 

The reciprocal automorph is obtained from (2) by changing 
u to —u, from (3) by changing the signs of both / and u\ thus 

2. Denominator of a Rational Automorph. The denominator of 
a rational automorph is the least common denominator of its 
four coefficients. To obtain all automorphs (2) having denomi­
nator m we write / = T/rn, u = U/m, where 7\ [/, m are any in­
tegers satisfying 

(5) T2 - dU2 = Am2, g .c.d. (w, U) = 1. 

* Presented to the Society, October 26, 1935. 
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For any common divisor of m, aU, (T+bU)/2, (T — bU)/2, cU 
is a divisor of aU, bU, cU, and hence is 1, ƒ being primitive. 

Let A denote the denominator of (3) with the substitution 
t=T/m, u=U/m satisfying (5). Evidently A\am. Further 
aU/m^k/A, U/m = k/(aA), where U/m is in lowest terms. 
Hence m\ aA. 

3. Transform of an Automorph. If A is a rational automorph 
of ƒ, and 5 is a unitary integral transformation carrying ƒ into 
ƒ' = [a', b', c'], then A'^S~XAS is a rational automorph of ƒ ' 
having the same denominator as A. For multiplication by in­
tegral matrices cannot increase the denominator, and we can 
solvefor A = SA'S-K 

Let £i denote the matrix of one column consisting of two ele­
ments X{, ji. Let the integral solution £i of (1) be carried into 
the integral solution £2 = ^4~1£i, by the rational automorph A. 
Then the automorph S~^4 S of ƒ' carries the integral solution 
S-1?! of 

(6) a'x2 + b'xy + c'y2 = n 

into the integral solution S~1^2 of (6). 

4. THEOREM 2. The denominator of any rational automorph of 
[a, bf c] which carries an integral solution of (1) into an integral 

solution must be a divisor of n. 

As regards (2), we merely multiply by — y and x and combine 

1 1 
— (T-bU)x-cUy^O, aUx-\ (T + bU)y = 0 (modm), 

to obtain U(ax2+bxy + cy2) = 0 , whence n = 0 (mod m). 
For (3) we have similarly aUx — (T — bU)y/2 = 0 (mod m), 

— (T-bU)ax+ <—(T - bU)b + acu\y = 0 (mod am), 

whence (T+bU)ax/2+acUy = 0 (mod m), aU(ax2-\-bxy-{-cy2) = 0 , 
and finally an = 0 (mod m). Thus A| a2n. Employing as in §3 an 
equivalent form with a' prime to a, A\a'2n. Hence A\n. 

5. THEOREM 3. Any two integral solutions of (1) can be trans­
formed into each other by proper {and improper) rational auto-
morphs of [a, b} c]. 
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For from ax? +bxiyi+cy? =n, (i== 1, 2), follows 

T2 — dU2 = 4n2, T = 2axix2 + b(xiy2 + x2y{) + 2cyiy2, 

U = X!y2 - x2yu 

Let ^ denote (2) with (t, u) = (T/n, -U/n). We find that 
^ - ^ 1 = ^2. If £ denotes (3) for this (*, u)y B& = (x2 + by2/a} -y2). 

Let 5 = g.c.d.(x2, 3̂ 2). Let the unitary transformation 

/x2/ô h\ 

carry ƒ into ƒ', where a' = n/o2. Evidently S~1^2 is the solution 
x = 3, y = 0 of (6). Define T', U' by (7) with ƒ' for / , S" 1 ^ and 
5"~1^2 for £1 and £2, and let B' denote the corresponding auto-
morph (3) off' with / = — T'/n, u — U'/n. Then B' carries <S-1£i 
into S~1%2, and the automorph SB'S~l of ƒ carries £1 into £2. 

6. Product of Rational Automorphs. Let ̂ 4* and J5i denote (2) 
and (3), respectively, with (t, u) = (Ti/m{, Ui/rn,i)\ a n d let 
mz = mlm2, T?-dU? = 4m?t (i = l, 2, 3). Then AiA2=Az and 
^4iB2 = Bs, where 

(8) 2r3 = rxr2 + ^t/iC/2, iuz = T W , + r2tfi. 
Also JBIJB2=^43 and BiA2 — Bz, where in place of (8) we have 

(9) 2 r 3 = TXT% - dU1U2) 2UZ = VXT2 - U2TU 

COROLLARIES. AIA2 = A2AI, BlB2 = (B2B1y
i, AiB2=A2Bx 

^BxAr^BiAr1. 

7. Rational Automorphs of Denominator mn. It is not in gen­
eral true, even if m and n are relative-prime, that a rational 
automorph of denominator mn can be expressed as a product of 
rational automorphs of denominators m and n. This is true of 
a wide variety of classes even with h(d)>l; for example, of 
[2, 1, 3] of discriminant d= —23. But for the principal form 
[l, 1, 6] of this discriminant there are rational automorphs of 
denominator 6, but none (proper or improper) of denominators 
2 and 3. 

The parametric solution of (5) may be useful; for each 
factorization d — rs, we have m — {ru? — sui)/4, u — U\U2, 
t = (ru? +su2

2)/2, where U\ and u2 are integers of g.c.d. 1 or 2, 
and m is an integer prime to u. 
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Two rational automorphs Ai and A2 of ƒ may be called right-
equivalent if there exists an integral automorph 7 of ƒ such that 
A1I — A2. If (Tu Ui) and (T2, U%) belong to the same set* of solu­
tions of (5), the corresponding automorphs (with t = Ti/m, 
u = Ui/m) are readily seen to be right-equivalent. 

M C G I L L UNIVERSITY 

A NOTE ON RECURSIVE FUNCTIONSf 

BY S. C. KLEENE 

The notion of a recursive function of natural numbers, which 
is familiar in the special cases associated with primitive recur­
sions, Ackermann-Péter multiple recursions, and others, has 
received a general formulation from Herbrand and Gödel. The 
resulting notion is of especial interest, since the intuitive notion 
of a "constructive" or "effectively calculable" function of 
natural numbers can be identified with it very satisfactorily. J 
Consider the operation of passing from a function p(xi, • • • , 
xn, y), such that for each set of values of xu • • • , xn the equa­
tion p(xu • • - ,xn,y)=0 has solutions for y, to the function 
uey[p(xu ' ' ' , xn, y)=0]" of which the least solution is 
Xu ' ' ' , xn- We have shown that the (general) recursive func­
tions are the functions which are derivable from the primi­
tive recursive functions by one application of this operation 
and of substitution.! Herein we note the related result, that the 
recursive functions are the functions obtainable by repeated ap­
plications of the operation just described and of substitution 
from the three particular functions x-\-y (sum), x-y (product), 
5„* (Kronecker delta). This result follows from the other by an 
adaptation of an argument used by Gödel in proof that every 

* For definition of set, see Pall, Transactions of this Society, vol. 35 (1933), 
p. 491; or Dirichlet, Vorlesungen iiber Zahlentheorie, §87. 

t Presented to the Society, January 1, 1936. 
t See A. Church, An unsolvable problem of elementary number theory, 

American Journal of Mathematics, vol. 58 (1936), pp. 345-363, §7. 
§ S. C. Kleene, General recursive functions of natural numbers, Mathe­

matische Annalen, vol. 112 (1936), No. 5, IV and V. 


