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The first four peaks give the greatest integers requiring 548, 
333, 314, 309 ninth powers, respectively. There is very strong 
evidence that a like result holds for the next 15 peaks. For ex­
ample, all integers between e+d and e + 2d are sums of 128 ninth 
powers; all between e+2d and e + 3d are sums of 125. 
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1. Introduction. This paper is to serve as a brief introduction 
to the method of considering the analysis of abstract topological 
spaces through the medium of homeomorphic mappings of these 
spaces on subsets of Banach spaces, f Our primary objective 
here, however, is to obtain for some general topological groups 
the abstract correspondents of the fundamental Lie partial dif­
ferential equations for an r-parameter continuous group. J The 
essential notion is the treatment of the general situation with 
the aid of abstract coordinates in Banach spaces wherein the 
Fréchet differential may be used.§ 

By an abstract topological space is meant here a set of ele­
ments of completely unspecified nature, together with an unde­
fined concept, tha t of neighborhood of an element (we denote 
the elements by small Latin letters, and the neighborhood as­
sociated with an element a by U(a)), satisfying the four Haus-
dorff postulates given below.|| 

* Presented to the Society, November 30, 1935. 
f S. Banach, Théorie des Opérations Linéaires, 1932. 
% S. Lie, Theorie der Transformationsgruppent vols. 1,3. 
§ M. Fréchet, Annales de l'École Normale Supérieure, (3), vol. 42 (1925), 

p. 293. Briefly, ƒ(x) on B\ to B2 has a differential a t x = x0, if there exists a func­
tion ƒ(x; z) on Bi2 to B2l linear (additive and continuous) in z and such that 
given a p > 0 there is determined a n>0, so tha t \\f(xo-\-z)—f(xo)—f(xo;z)\\ 
ûp\\z\\ for | |s| | Sn(p); f(x0; z) is the differential. See also various papers by 
Hildebrandt, Graves, Kerner, Michal, and many others. 

|| F . Hausdorff, Mengenlehre, 1927, pp. 226-229. 
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(1) aeU(a). 

(2) be U(a). D : 3 U(b). U(b) c U(a). 

(3) EM*) n Ui(a)oUa(a). 

(4) a T* b. D : .3î/(a).£/(&):ï7(a)n £7(6) = (0). 

A Banach space is a linear, normed abstract space with real 
multipliers. If the multipliers are complex, one speaks of a com­
plex Banach space. The fundamental notions of point-set theory 
and the logical calculus of classes is assumed. By a homeo­
morphic mapping we mean the customary bi-unique, bi-con-
tinuous correspondence of one set of elements to another.* 

2. Types of Mapping. The first type of mapping between the 
two spaces is effected as follows. Let 2 be an open subset in the 
Banach space B. Map homeomorphically every neighborhood 
in the topological space T on this same set 2). Note that such a 
mapping implies the postulation of an infinite character for the 
space T, since, using postulate (2) above, one has Z7(a)A2, and 
U(b)h^E with U(b) c U(a). But since homeomorphism is transi­
tive, U(a)hU(b). Then U(a) has the same potency as one of its 
proper subsets, so that, in the Dedekind sense, it is infinite. 

Now consider the intersection C of two neighborhoods U(â), 
U{b), C = U{a) fl 17(5). Then by the mappingsf a =/a(c), /3 =fy(c) 
one has ct=fa(fh'1(P)) ==0(j3). Thus 0(/3) is a homeomorphic map 
of S 1 on S2, since its composing functions are homeomorphisms. 
Hence we have the following theorem. 

THEOREM 1. The intersection of two neighborhoods in T deter­
mines a homeomorphic mapping of one subset S1 of S on to an­
other, 22 . 

We now make the following definitions: 
DEFINITION 1. The value a of fâ(a) will be called the abstract 

coordinate of a in the Banach space B. 
DEFINITION 2. The class of homeomorphic transformations 

{ûj = 0(j8)} will be called the class of abstract coordinate trans­
formations for the class {C}. 

* W. Sierpinski, General Topology, 1934. When two sets Ei, E2 are homeo­
morphic under a mapping function ƒ, one writes EihfE2. 

f If xeU{ôo), we wr i tea=/x(x) , x=fz"1 {a)\ xeT, a e S . 
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All possible intersections of neighborhoods in T determine, 
by Theorem 1, homeomorphic mappings of various parts of 2 
on various other parts. 

DEFINITION 3. If all such point transformations possess 
Fréchet differentials up to and including the rth ( r ^ l ) , the 
complete mapping will be called r-differentiable. 

THEOREM 2. For a complex Banach space a 1-differentiable map 
is analytic. 

PROOF. By known theorems,* the existence of a first Fréchet 
differential implies that the function is continuous, that it pos­
sesses a Gateaux differential, and hence that the function, and 
so the map, is analytic. 

THEOREM 3. Let c = t(d) map homeomorphically C1 on C2, where 
Cl, C2 c C. Then there are induced two distinct homeomorphic 
maps of two distinct subsets of 2 on two other distinct subsets. 

PROOF. a=fa(c), (3=Mc); y=fa(d), d=f-b(d). Then 
<x=fa(t(f?(y)))=Oa(y) homeomorphically, and (3=Mt(ff\ô))) 
= 05(8) homeomorphically, where a, /5, y, 8 are typical elements 
in distinct subsets of S. 

THEOREM 4. Every homeomorphic point transformation on S 1 

to S2 (S1 , D 2 c 2 ) is an abstract coordinate transformation. 

PROOF. Let the transformation be ô=^(/x). Then there exists 
a neighborhood U(x) such that for zeU(x), /Ji=fx(z). Hence 
à=ip(fx(z))> or there exists a mapping function distinct from ƒ*, 
so that ô =fy(z). This implies that there exists a U(y)hf-2, where 
zeU(x) n U(y). Hence S=^(/x) is a true coordinate transforma­
tion. 

For an r-differentiable map, considering Theorems 3 and 4, 
one may make the following definitions. 

DEFINITION 4. A homeomorphic point transformation c = t(d) 
on C1 to C2 in the intersection C will be said to be of class C(r). 

DEFINITION 5. For a complex Banach space and a 1-differ­
entiable map, c — t(d) will be called an analytic transformation. 
(See Theorem 2.) 

* A. E. Taylor, California Institute of Technology thesis, (1936) ; see also 
this Bulletin, vol. 41 (1935), p. 800, abstract 41-11-424, and Graves, this 
Bulletin, vol. 41 (1935), pp. 641-662. 
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As an example of these definitions take the conformai map­
ping of one complex plane (T) on another (B). The interiors of 
circles about points are taken as neighborhoods in T, each one 
going over into the same suitably chosen open set in B. Then 
as is readily seen, for analytic mapping, c = t(d) is analytic, in 
the ordinary sense. 

THEOREM 5. Every c — t(d) {as in Definition 4) determines f our 
points, distinct from c and d, each one of which is in a neighbor­
hood intersection in T. 

PROOF. a=fa{c), P=fb(c); y=fa{d), 8=fb(d). Hence 
oi=fa(t{fâl(y)))=Qa{y) and (3 = 8b{8). Also, by the transitivity 
of homeomorphism a=4>a{à), /3=</>&(7). By Theorem 4, these 
represent coordinate transformations for four distinct points in 
T. 

DEFINITION 6. A regular abstract coordinate transformation 
of class r is an abstract coordinate transformation possessing 
differentials up to and including the rth, where the rih differen­
tial is continuous. 

3. Group Function. Now we let the topological space T sup­
port a group under the composition function c~g(a, b). Further 
let this group be right-continuous. That is, if a be fixed, and c', 
b' are variables so that c' = g{a, b'), the existence of a U(c) im­
plies the existence of a U(b) such that U{c) 3 g{a, U{b)). Hence, 
as is known, g{a, U(b)) is a neighborhood of c, say U{c). Now 
take any three elements of T, a, b, c and two fixed elements/, h. 
Then the functions cf = g{f, &')> °'— g(h> a') may be considered. 
One has c'=g(f, g{h, a')) = g{g{f, h),a') =g(fc, a').# 

If a' ranges over at least part of some U(a), it follows that 
there will be a U(b) over part of which bf will range, and a U{c) 
over part of which c' will range, by continuity. Then there exist 
mapping functions fa, fy, f-c such that a'=fà{a')1 P'=fb(b'), 
y'=fc(cf), wherein a', j3', y' range over at least parts of S. 
The group function g defines a homeomorphism of c to b in 
c = g{a, b). Then 

c' = g(f, b')W = ƒ,(£(ƒ, fi\V))) = /iOO, 

V = g(h, a'):? = fî{g{h, fï\a'))) = *(«'), 

c' = g(k, a')W = f-c(g(k,fr\a'))) = p(a ') . 
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where y'hji', f3'hPaf, and hence y'h^a'', that is, 7 / = M ( ^ ( ^ 0 ) 

= p(a /) . But by Theorem 4, there are determined e{, el, e3' ; 
e{ eUi fl [7i, • • • , where the e's are not, in general, in any of the 
neighborhoods above, and for which fi, v, p are coordinate trans­
formations 

y'=Me{), tr = Me{), ••• 

Consequently, if the whole mapping is r-differentiable, one has 

(A) P(a';5a') = „(„(«'); v(a';Sa')). 

Write 

P(a';5a') = R(y', a', da'), 
(A') 

y'=MC), « '=ƒ=(« ' ) • 

Consider a neighborhood U(ci) that intersects U(c), and a 
U(âi) that intersects 27(a). Then there are determined for cer­
tain subsets of values of c'', a' coordinate transformations. In 
fact 

y'=MC), y{=f-Cl(c'), ( T / ^ T ' ) , 

for values of cr satisfying both of these. Similarly 

« ' = ƒ « ( * ' ) , OL[ = ƒ « > ' ) , (a! * af). 

Then 

7i' = A ( / f V ) ) = 0(7') 

and 

«/ = A( / f V ) ) = r(a') 
are the coordinate transformations. Note that the ranges of pos­
sible values for y' and a' are not as extensive as before. 

But between any y[ and any a[ there exists a coordinate trans­
formation determining a point p in the intersection of two U(x), 
U(y),_ with y{ =fx(P'), a{ =MP'),y{ =f-x(f-y

1(oc{))=cP(a{), 
wherein c/> has a first Fréchet differential. The coordinate 
transformation mentioned above is necessarily the same for the 
whole set y{ into the whole set a{ . For, writing <j>(a{ ) explicitly, 
we have 

V - fc(g(k, / r V ) ) ) = p(«') so that 7 / = ^ ( r " 1 ^ / ) ) ) , 
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tha t is, 

7i' = fJfi\fMk, f?(fa(f*:\«{ ))))))) -
7i' = ƒ« , («(* , /„^(« i ' ) ) ) = Pi(«') = * ( « i ) . 

(Note the formal invariance of the p function.) Hence we have 

(B) Pl{a{ ; «a/ ) = 6{p(T-\a{ )) ; P C T ^ I ' ) J ^ ( « i ' ; ««/ ))). 

Now (A) may be written 

(C) R1(y{ , a{ , W ) = 6(y'; R(y', a', ha')), 

since r~l{a{ ; ôce/) = da', where 7/ =6(yf). 
Equation (C) indicates that R(y', a', da') transforms like an 

abstract contravariant tensor of rank 1, with respect to y'. With 
respect to a' and da' the function is scalar. 

If in (A') one puts a' = y', 

p(a'; 8a') = R(a', a', da') = ba'. 

Further, from (A) and (A'), 

R(y', a', ba') = R(y', 0', R{0', a', ba')). 

Hence, if y'=a', R{y', /3', 5/3') is inverse to R(/3', 7 ' , 5/3'). So 
i£(7', /3', 5a') is a solvable linear function of da' with inverse 
i£(j3', 7 ' , Sa'). -K vanishes if and only if 5 a ' = 0. We remark that 
for an r-differentiable map the quantities R possess continuous 
Fréchet differentials up to the (V — 2)th order. 

Now /i(|8'; 5/3') =R(y', a', R(a', 0' , 8/30), where 7'=M(/3'), so 
that /x is independent of a'. Then we may put a' = a0, where a0 

is the correspondent in 2 of the identity element a0 of the topo­
logical group. Define 

R(y',ao,dp'). = .R'(y',öp'), 

* ( a o , 7 ^ 0 O . = .*(7 ' ,«0 ' ) , 

where the R and 2£' on the right are inverse. Then the fundamen­
tal differential equation of Lie type, satisfied representatively in 
the Banach space by the continuous topological group function, is 

(D) MO3';S/3') = * ' ( M 0 3 ' ) , #03', 5/3')). 
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