ON SOME EXTREMAL PROPERTIES OF TRIGONOMETRIC POLYNOMIALS WITH REAL ROOTS

BY J. GERONIMUS

1. Introduction. L. Fejér [1],† O. Szász [2], [3], [4] and E. v. Egerváry [5] have found many interesting extremal properties of non-negative trigonometric polynomials. In particular, Szász [3] has found that for every non-negative trigonometric polynomial of order $\leq n$ with real coefficients,

(1)
$$G_n(\theta) = 1 + \Re \sum_{k=1}^n \bar{\gamma}_k e^{ik\theta}, \quad (\gamma_k = \alpha_k + i\beta_k; k = 1, 2, \dots, n),$$

the inequality

(2)
$$|\gamma_k| \leq 2 \cos \frac{\pi}{\left\lceil \frac{n}{k} \right\rceil + 2}, \qquad (k = 1, 2, \dots, n),$$

is valid.‡

The object of this note is to find the *minimum* of the modulus of the first coefficient γ_n , supposing that all roots of $G_n(\theta)$ are real. The first problem of this kind has been considered by Blumenthal [6]; we shall return in §4 to his problem and its generalization.

2. Equality of Roots of $G_n^*(\theta)$ for Problem 1. Consider the following problem.

PROBLEM 1. Find the minimum of the modulus of the first coefficient γ_n of a non-negative trigonometric polynomial

$$G_n(\theta) = 1 + \Re \sum_{k=1}^n \bar{\gamma}_k e^{ik\theta}$$

of order n with real roots.

[†] Numbers in brackets refer to the Bibliography at the end.

 $[\]ddagger Rz$ means real part of z; [a] means the greatest integer $\leq a$.

In order to solve this problem we shall prove the following simple lemma.

LEMMA 1. All roots of the polynomial $G_n^*(\theta)$ for which the minimum in Problem 1 is attained must be equal.

Consider a non-negative trigonometric polynomial†

(3)
$$G_n(\theta) = 4 \sin^2 \frac{\theta - \theta_1}{2} \sin^2 \frac{\theta - \theta_2}{2} F_{n-2}(\theta) = \Re \sum_{k=0}^n \bar{\gamma}_k e^{ik\theta},$$

where $F_{n-2}(\theta)$ is a non-negative trigonometric polynomial of order n-2 with real roots,

(4)
$$F_{n-2}(\theta) = \Re \sum_{k=0}^{n-2} \bar{\gamma}_k^* e^{ik\theta} = \sum_{k=0}^{n-2} |\gamma_k^*| \cos(k\theta - \alpha_k),$$

where $\alpha_k = \arg \gamma_k^*$, $(k = 0, 1, 2, \dots, n-2)$, and $\alpha_0 = 0$.

On putting $\alpha = (\theta_1 + \theta_2)/2$, $\delta = (\theta_1 - \theta_2)/2$, we see easily that

(5)
$$\gamma_0 = \gamma_0^* \left(1 + \frac{1}{2} \cos 2\delta \right) - \left| \gamma_1^* \right| \cos \left(\alpha_1 - \alpha \right) \cos \delta + \frac{1}{4} \left| \gamma_2^* \right| \cos \left(\alpha_2 - 2\alpha \right); \qquad \left| \gamma_n \right| = \frac{1}{4} \left| \gamma_{n-2}^* \right|.$$

We see that $|\gamma_n|$ does not depend on α , nor on δ ; on the other hand γ_0 is maximal for $\delta = 0$ if $\cos (\alpha_1 - \alpha) \leq 0$, or for $\delta = \pi$ if $\cos (\alpha_1 - \alpha) \geq 0$. In both cases the minimal value of $|\gamma_n|$ under condition $\gamma_0 = 1$ corresponds to $\delta = 0$ or $\delta = \pi$; therefore θ_1 and θ_2 coincide. \ddagger

3. Polynomials for which γ_n has Extremal Values. It follows from this lemma that $G_n^*(\theta)$ is

(6)
$$G_n^*(\theta) = C[1 + \cos(\theta + \alpha)]^n,$$

 α being an arbitrary real argument; it may be written thus:§

(7)
$$G_n^*(\theta) = \frac{C}{2^{n-1}} \left\{ \frac{1}{2} C_{2n,n} + \sum_{k=1}^n C_{2n,n-k} \cos k (\theta + \alpha) \right\}.$$

[†] It is clear that all real roots of a non-negative trigonometric polynomial are of even multiplicity.

 $[\]ddagger \theta_1$ and $\theta_1 + 2\pi$ are not considered as different.

[§] See [6], p. 392.

For this polynomial we have

$$\gamma_0 = \frac{1}{2^n} C(C_{2n,n}); \qquad |\gamma_n| = \frac{1}{2^{n-1}} C,$$

whence we find the ratio

$$\frac{|\gamma_n|}{\gamma_0} = \frac{2}{C_{2n,n}}.$$

We have proved the following theorem.

THEOREM 1. If $G_n(\theta)$ is a non-negative trigonometric polynomial,

$$G_n(\theta) = 1 + \Re \sum_{k=1}^n \bar{\gamma}_k e^{ik\theta},$$

of order n with real roots, then

$$(9) \frac{2}{C_{2n,n}} \leq |\gamma_n| \leq 1;$$

the maximum is attained for the polynomial †

(10)
$$G_{\max}(\theta) = 1 + \cos n(\theta + \alpha),$$

and the minimum for the polynomial

(11)
$$G_{\min}(\theta) = \frac{2^n}{C_n} \left\{ 1 + \cos \left(\theta + \alpha \right) \right\}^n,$$

α being an arbitrary real argument.

4. The Generalized Extremal Problem. Consider now the following extremal problem.

PROBLEM 2. Find the minimum of the ratio

(12)
$$\frac{A_m^2 + B_m^2}{\lambda A_0^2 + \sum_{k=1}^m (A_k^2 + B_k^2)},$$

[†] See [1], [2].

where

$$g_m(\theta) = A_0 + A_1 \cos \theta + B_1 \sin \theta + \cdots + A_m \cos m\theta + B_m \sin m\theta$$

is a trigonometric polynomial of order m with real roots, and λ is an arbitrary non-negative number.

The above mentioned problem of Blumenthal [6] corresponds to $\lambda = 1$. It is easy to see that for $\lambda = 2$ Problem 2 is a particular case of the Problem 1. Indeed we see that

(13)
$$g_m^2(\theta) = G_n(\theta) = \Re \sum_{k=0}^n \tilde{\gamma}_k e^{ik\theta}$$

is a non-negative trigonometric polynomial of order n=2m, while

(14)
$$\gamma_0 = A_0^2 + \frac{1}{2} \sum_{k=1}^m (A_k^2 + B_k^2), \quad |\gamma_n| = \frac{A_m^2 + B_m^2}{2};$$

therefore we have for $\lambda = 2$

(15)
$$\frac{A_m^2 + B_m^2}{2A_0^2 + \sum_{k=1}^m (A_k^2 + B_k^2)} \ge \frac{2}{C_{2n,n}} = \frac{2}{C_{4m,2m}}.$$

To solve our problem for all $\lambda \ge 0$ we shall put it in the following form.

PROBLEM 2'. Find the maximum of the expression

(16)
$$L(G) = \frac{1}{2\pi} \int_0^{2\pi} G_n(\theta) d\theta + \epsilon \left\{ \frac{1}{2\pi} \int_0^{2\pi} \left[G_n(\theta) \right]^{1/2} d\theta \right\}^2,$$

$$(\epsilon \ge -1),$$

where $G_n(\theta)$ is a non-negative trigonometric polynomial

$$G_n(\theta) = \Re \sum_{k=0}^n \bar{\gamma}_k e^{ik\theta}, \qquad (|\gamma_n| = 1),$$

of order n = 2m with real roots.

5. Equality of Roots of $G_n^*(\theta)$ for Problem 2'. We shall prove the following lemma.

LEMMA 2. All roots of the polynomial $G_n^*(\theta)$ for which the maximum in Problem 2' is attained must be equal.

Put

(17)
$$[G_n(\theta)]^{1/2} = 2 \sin \frac{\theta - \theta_1}{2} \sin \frac{\theta - \theta_2}{2} F_{m-1}(\theta)$$

$$= [\cos \delta - \cos (\theta - \alpha)] F_{m-1}(\theta),$$

where $\alpha = (\theta_1 + \theta_2)/2$, $\delta = (\theta_1 - \theta_2)/2$, and $F_{m-1}(\theta)$ is a non-negative trigonometric polynomial of order m-1,

(18)
$$F_{m-1}(\theta) = \Re \sum_{k=0}^{m-1} \bar{c}_k e^{ik\theta},$$

with real roots. Thus we get

(19)
$$\frac{1}{2\pi} \int_0^{2\pi} \left[G_n(\theta) \right]^{1/2} d\theta = c_0 \cos \delta - \frac{1}{2} \left| c_1 \right| \cos (\beta_1 - \alpha),$$

where $\beta_k = \arg c_k$, $(k=0, 1, \dots, m-1)$, and $\beta_0 = 0$. Further let

(20)
$$F_{m-1}^{2}(\theta) = \Re \sum_{k=0}^{2m-2} \bar{c}_{k}^{*} e^{ik\theta};$$

then we obtain

(21)
$$\frac{1}{2\pi} \int_0^{2\pi} G_n(\theta) d\theta = c_0^* \left(1 + \frac{1}{2} \cos 2\delta \right) \\ - \left| c_1^* \right| \cos (\beta_1^* - \alpha) \cos \delta + \frac{1}{4} \left| c_2^* \right| \cos (\beta_2^* - 2\alpha),$$

where $\beta_k^* = \arg c_k^*$, $(k=0, 1, \dots, 2m-2)$, and $\beta_0^* = 0$. Using (19) and (21) we have

(22)
$$L(G) = A \cos 2\delta + B \cos \delta + C,$$

where

$$A = \frac{1}{2} (c_0^* + \epsilon c_0^2),$$

$$B = -|c_1^*| \cos(\beta_1^* - \alpha) - \epsilon c_0| c_1| \cos(\beta_1 - \alpha),$$

$$(23) \quad C = \frac{1}{4} |c_2^*| \cos(\beta_2^* - 2\alpha) + \frac{1}{4} \epsilon |c_1|^2 \cos^2(\beta_1 - \alpha) + c_0^* + \frac{1}{2} \epsilon c_0^2.$$

It is important to point out that $|\gamma_n| = (1/4) |c_{2m-2}^*|$ does not depend on α , nor on δ . Since we have

(24)
$$c_0^* = c_0^2 + \frac{1}{2} \sum_{k=1}^{m-1} |c_k|^2,$$

it is clear that for $\epsilon \ge -1$ we have

(25)
$$A = \frac{1}{2} (1 + \epsilon) c_0^2 + \frac{1}{4} \sum_{k=1}^{m-1} |c_k|^2 > 0.$$

Therefore $L(G_n)$ is maximal for $\delta = 0$ if $B \ge 0$, and for $\delta = \pi$ if $B \le 0$; in both cases θ_1 and θ_2 coincide, which proves our lemma.

6. Polynomials having the Extremal Property. We see that the polynomial $G_n^*(\theta)$ is

(26)
$$G_n^*(\theta) = 2^{n-1} [1 + \cos (\theta + \alpha)]^n$$
$$= \frac{1}{2} C_{2n,n} + \sum_{k=1}^n C_{2n,n-k} \cos k(\theta + \alpha),$$

and we have for it

(27)
$$L(G_n^*) = \frac{1}{2} \left(C_{2n,n} + \epsilon (C_{n,n/2})^2 \right).$$

Thus we have proved the following theorem.

THEOREM 2. If $G_n(\theta)$ is a non-negative trigonometric polynomial of order n=2m,

$$G_n(\theta) = \Re \sum_{k=0}^n \bar{\gamma}_k e^{ik\theta}, \qquad |\gamma_n| = 1,$$

with real roots, then

(28)
$$\frac{1}{2\pi} \int_{0}^{2\pi} G_{n}(\theta) d\theta + \epsilon \left\{ \frac{1}{2\pi} \int_{0}^{2\pi} \left[G_{n}(\theta) \right]^{1/2} d\theta \right\}^{2} \\ \leq \frac{1}{2} \left(C_{2n,n} + \epsilon (C_{n,n/2})^{2} \right), \quad (\epsilon \geq -1);$$

the maximum is attained for the polynomial

(29)
$$G_n^*(\theta) = 2^{n-1} \{ 1 + \cos (\theta + \alpha) \}^n,$$

 α being an arbitrary real argument.

This result may also be stated as the following theorem.

THEOREM 2'. If $g_m(\theta)$ is a trigonometric polynomial of order m, $g_m(\theta) = A_0 + A_1 \cos \theta + B_1 \sin \theta + \cdots + A_m \cos m\theta + B_m \sin m\theta$, with real roots, then

(30)
$$\frac{A_m^2 + B_m^2}{\lambda A_0^2 + \sum_{k=1}^m (A_k^2 + B_k^2)} \ge \frac{2}{C_{4m,2m} + \frac{\lambda - 2}{2} (C_{2m,m})^2}, \quad (\lambda \ge 0);$$

this minimum is attained for the polynomial

(31)
$$g_m^*(\theta) = C\left\{1 + \cos\left(\theta + \alpha\right)\right\}^m.$$

BIBLIOGRAPHY

- 1. L. Fejér, Über trigonometrische Polynome, Journal für Mathematik, vol. 146 (1915), pp. 53-82.
- 2. O. Szász, Über nichtnegative trigonometrische Polynome, Sitzungsberichte der Bayerischen Akademie der Wissenschaften, (1917), pp. 307-320.
- 3. O. Szász, Elementare Extremal probleme über nichtnegative trigonometrische Polynome, ibid., (1927), pp. 185-196.
- 4. O. Szász, Über harmonische Funktionen und L-Formen, Mathematische Zeitschrift, vol. 1 (1918), pp. 149-162.
- 5. E. v. Egerváry und O. Szász, Einige Extremal probleme im Bereiche der trigonometrischen Polynome, ibid., vol. 27 (1927), pp. 641-652.
- 6. O. Blumenthal, Einige Minimums-Sätze über trigonometrische und rationale Polynome, Mathematische Annalen, vol. 77 (1916), pp. 390-403.

MATHEMATICAL INSTITUTE, KHARKOW, U.S.S.R.