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T H E METHOD OF M O M E N T DISTRIBUTION FOR 
T H E ANALYSIS OF CONTINUOUS STRUCTURES 

BY LOUIS BRAND 

1. Introduction. If ab is any member of constant cross-section 
forming part of a continuous structure, the moments at its ends, 
Mab and Mba, are given in terms of the angle-changes 0a, 0b at 
its ends and the lateral deflection per unit of length R by the 
slope-deflection equations* 

Mab = 2EKab{2Qa + 6b- 3R) + Cab, 

Mba = 2EKba(2db + 6a- 3R) ± Cba. 

Here Kab=Kba denotes the sectional moment of inertia of ab di­
vided by its length (ƒ//) and C«&, Cba are the numerical values 
of the fixed-end moments due to the loading on ab. For the 
derivation of these equations and the sign conventions em­
ployed, reference may be made to the Bulletin just cited. 

When there is no lateral deflection, or when this is neglected, 
R = 0, and we write the slope-deflection equations 

(1) Mab = 2EKab(26a + Bb) + M™, 

(2) Mba = 2EKba(26b + 0a) + M™, 

in which M(^\ M$ denote the fixed-end moments inclusive of 
sign. Suppose also that at all joints of the structure, other than 
certain fixed ends, there is no external momental load. At any 
such joint a, we must have 

(3) E^«< = 0, 

the summation ranging over all members that meet at a. At a 
fixed end c, 6C is given. Owing to the continuity of the structure, 
all members meeting at a joint a rotate through the same angle 
0a. At each such joint we have an equation of type (3). Thus we 
have precisely as many equations (3) as we have unknown 
angles, so that in general these equations determine the angles 

* Bulletin No. 108, Engineering Experiment Station, University of Illinois, 
p . 20. 
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uniquely. Having found them, equations (1) and (2) give the 
terminal moments for each member of the structure. 

Hardy Cross has devised a method of successive approxima­
tions for solving equations (1), (2), and (3) for the terminal 
moments Mab that is very simple and effective. In his original 
paper* he regards the method as the mathematical parallel of a 
physical process. To quote Cross: "The beams are loaded or 
otherwise distorted while the joints are held against rotation; 
one joint is then allowed to rotate with the accompanying dis­
tribution of the unbalanced moment at that joint while the re­
sulting moments are carried over to the adjacent joints; then 
another joint is allowed to rotate while the others are held 
against rotation; and the process is repeated until the joints are 
'eased down' into equilibrium." 

2. The Successive Approximations. To begin the calculation 
corresponding to this process we write at the ends of each mem­
ber the fixed-end moments corresponding to the load it carries. 
Consider a joint a at which the members ab> ac, • • • , ak meet. 
If the algebraic sum of the fixed-end moments at a, 

S = Mab + Mac + ' ' ' + Mak , 

is not zero, we add a moment —S at a and distribute it among 
the members meeting there in the proportion of their stiffness. 
The stiffness of any member ab is defined as the moment which 
must be applied at its end a to make da = 1 when b is held fixed 
(0&=O). From (1) it is clear that the stiffness of ab is 4EKab. 
Thus the stiffnesses of the members ab, ac, • • • , ak are pro­
portional to Kab, Kac, - - ' , Kak- The balancing moment —S is 
therefore distributed among these members so that they receive 
respectively 

Kab Kac Kak 

Z^, Kai 2^ Kai 2_j Kai 

While joint a is allowed to rotate all other joints are held 
fixed : in particular, 6b = 0c= • • • = 6k = 0. Hence from equations 

* Proceedings of the American Society of Civil Engineers, May, 1930, pp. 
919-928. For the paper with the complete discussions, see the Transactions of 
the American Society of Civil Engineers, vol. 96 (1932), pp. 1-156. 
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(1) and (2), a moment 4EKab6a applied at end a of ab induces a 
moment 2EKha6a at the fixed end b of ab. Thus, in the case of 
members of constant section, one-half of the moment distrib­
uted to ab in balancing the joint a is carried over to the end b. 
We therefore call 1/2 the carry-over $ actor for members of con­
stant section. 

The three basic operations involved in the above method of 
moment distribution are therefore : 

BD (Balance and Distribute). If the moments at a joint do 
not balance, add the balancing moment at the joint and distribute 
it to the members meeting there in the proportion of their stiffness. 

C (Carry-over). One-half of each moment distributed to a mem­
ber is carried over to its other end. 

The moments carried over in operation C destroy the balance 
achieved in operation BD. Hence BD must be repeated on the 
moments carried over. A succession of operations C and BD 
will be called a cycle. If, at the end of any cycle, the fixed-end 
moment at end a of member ab is added algebraically to all the 
distributed and carried-over moments there, the sum will give 
an approximate value of Mab. We shall show that this approxi­
mate value approaches the true value of Mai as the number of 
cycles performed increases indefinitely. 

We next consider in detail this process of computing Mab. The 
first cycle consists in writing the fixed-end moments at a and 
distributing the balancing moment at a according to operation 
BD. As regards the end a of ab, this gives the entries 

(BDi) M^ = - ^ - J : M[°:. 

The moment M&, distributed to ab at b must now be carried 
over to a according to operation C. All these moments carried 
over to a create a new unbalance at this joint, which is then 
balanced and distributed according to operation BD. Thus the 
next two entries for the end a of ab are 

1 (i) 
(CI) —Mia, 



1 7i,r(2) 

— Mab , 
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(BD2) 

Similarly the next cycle of operations gives the entries at end 
a of ab : 

1 (2) 

(C2) —Ml, 
4 
1 (3) (3) Kab v--v (2) 

(BD3) —Ml», where Mah = E M 4 " ' °° Z^a *a • 

Continuing the cycles indefinitely and adding all the entries, 
we obtain 

(4) 

(0) F (1) 1 (2) 1 (3) "1 
Mab = Mab + Mab H Mab H Mab + ' ' ' \ 

L 2 4 J 
. 1 r^(1) . 1 i,r(2) i 1 iir

(8) . 1 
+ — Mba H Mba H Mha + ' " . 

2 L 2 4 J 
If the end a of ab is fixed, equation (3) does not apply and 

hence the operation BD is omitted. In this case Mab is built up 
from M$ and the successive moments carried over from &, and 
the first series in (4) is absent. 

3. Convergence of Series. We shall first establish the conver­
gence of the series in (4). Let C denote the sum of the absolute 
values of all the fixed-end moments for the entire structure.Then 
writing pab=Kab/^2Kai, we have from (BD1) 

\Maï\£Pa.'Z\M«\<C. 

Now at any joint a, other than a fixed end, 

X ) I Mai | = (pab + pac + ' ' ' + pak) \ 2 M ai | ^ Z ) | M ai \ • 

Forming such inequalities for all joints which are not fixed and 
adding the results we obtain 

Hence from (BD2) 

\M%\£Pa.Y,\Mu\<C. 
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In the same way we may show that 

\M™\ <C, (n = 3, 4, • • • ) . 

Both series in (4) are therefore absolutely convergent. 

4. The Series Satisfy the Slope-Deflection Equations. If we 
identify the first series in (4) with 4EKab0ai then the second 
series must represent lEKbafib, and (4) reduces to equation (1). 
That this identification is justified is readily seen from the fact 
that after any operation BD, the summed moments at a joint a 
(which is not fixed) satisfy equation (3); for the operation BD 
was expressly designed to accomplish this. Hence in the limit 
the moments Mab given by (4) satisfy the system of equations 
of type (3)—one equation for each free joint. Hence we see tha t 
the sums of the convergent series 

, , ( D . * , - . ( 2 ) . 1 _ _ ( 8 ) . . 

Mij -\ Mij H Mij + • • • , (i not a fixed joint), 
2 4 

satisfy precisely the same system of linear equations that 
4tEKijdi satisfy. Thus if the system of equations (3) has a unique 
solution for the angles 0», this solution is given by 

(1) 1 (2) 1 (3) 
(5) 4EKtfii= Mh + — M]j + — M]/ + • • • . 

2 4 

5. Moment at a Fixed End. If a is the fixed end of a member ab, 
the equation (3) does not apply and the operation BD is there­
fore omitted. The fixed-end moment M^ and the moments car­
ried over from b will total up to the actual external moment act­
ing on the structure at a. For on putting 0a = O in (1) we have 

(6) M t t 6 = 2EKabeb + Mab; 

and from (4), on omitting the first series due to the operation 
BD and retaining the second due to operation C, 

u ,,co) , ! r ^ ( 1 ) . 1 u ( 2 ) i 1 i^(3) , 1 
Mab = Mab H M ba H M ha H Mba + ' ' ' . 

2 L 2 4 J 
In view of (5) the series in brackets sums to 4:EKba6b, so tha t 
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the limiting value of the right-hand side has precisely the value 
given in (6). 

6. Procedure for a Member Hinged at One End. If a is the 
hinged end of a member ab, the end of a cycle will always reduce 
the total moment at a to zero. But this series of operations BD 
and C leading to the result zero may be avoided by taking the 
stiffness of ab proportional to Kab — (3/4:)Kaby and replacing the 
fixed-end moments Maf, M$ at the outset by 

Hab = 0, Hba = Mba Mab . 

These are the terminal moments for ab due to the given loading 
when a is hinged and b fixed. No moments need then be carried 
over to a from by and consequently there is nothing to carry back 
from a to b. To justify this procedure, we have from (1) and (2) 
in this case, 

0 = 2EKab(2da + 6b) + M™, 

Mba = 2EKab(2db + 6 a) + Mba\ 

On eliminating 6a from these equations we obtain 

3 (0) 1 (0) 
Mba = 2EKab —6b+ Mba Mab 

2 2 
= 4:EKabQb + Hba . 

But from the successive approximations for obtaining Mbat with 
Hif as a starting moment and no carry-overs from a, we have 

u TT(0) . f , . ( 1 ) , 1 , , ( 2 ) , 1 _ . ( 3 ) 

Mba = Hba +\ Mba + — Mba + ~ Mba + 
L 2 4 ] • 

where, in view of (5), the series in brackets is precisely 4=EK'badb 

as all distributions to ba are now made proportional to Kba. 
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