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Using the results given in (4), we have the following equality, 
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The integrand of the left-hand member belongs to a sequence 
of measurable, uniformly bounded functions, as a function of P , 
whose limit exists when i becomes infinite; so we let i become 
infinite and interchange the order of integration and pass to 
the limit for the left-hand member. The same considerations 
hold for the integrand of the right-hand member as a function 
of Q. Using (13), we have 
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The quantity df {T(r, Q)} /dr is non-negative. Hence we may 
substitute this last equation in (5) and change the Stieltjes in
tegral into a Lebesgue integral as we did above for the volume 
average. Thus we have established the theorem. 
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In my paper entitled On the summability of a certain class of 
series of Jacobi polynomials (this Bulletin, vol. 41 (1935), pp. 
541-549), the following change should be made; it conforms 
with the last proofs that I had seen. 

Page 544, 8th line from the bottom: read S%1 instead of 5 $ . 
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