
TOPICS IN T H E FUNCTIONAL CALCULUSf 

BY L. M. GRAVES 

PART I. T H E THEORY OF FUNCTIONALS 

In this lecture it is proposed to outline an abstract theory of 
functionals, with a development paralleling that of the theory of 
functions of real variables, and including also a chapter on 
analytic functionals. In Part II , some applications of the gene­
ral theory to various sorts of equations are indicated. 

From the abstract point of view, the functional calculus is a 
form of general analysis, and as such it was effectually initiated 
by Fréchet's thesis in 1906. Since then a large number of re­
searches have been concerned with the topological properties 
of abstract sets, and with the properties of continuous or semi-
continuous functionals. 

The postulational basis for an abstract topological theory 
may take various forms. A general basis consists of a general, 
that is, unrestricted class 36 of elements x, and an unrestricted 
function K on © to ©, where @ is the class of all subsets E of 36. 
The function K is then a set-valued function of sets. The system 
(36, K) constitutes a topological space. I t has been shown by 
Chittenden [7, pp. 294-298] % that a related set-function H 
may always be defined such tha t the space (36, H) has the three 
properties : 

I. H(D+E)=H(D)+H(E). 
I I . For every set £ , H(E) contains H(H(E)). 

I I I . If E is finite, H(E) is null. 
Such a space (36, H) is called an accessible space by Fréchet. 

If the points of H(E) are called the points of accumulation of 
the set E, then closed sets may be defined as usual. A point of 
a set E is interior to E in case it is not a point of accumulation 
of the complement of E. Open sets are those consisting only of 
interior points. The neighborhoods of a point x may be defined 
as those sets having x as an interior point. A set E is called com-

f An address delivered by invitation of the program committee at the 
Chicago meeting of this Society, April 19, 1935. 

| References in brackets are to the bibliography at the end of the paper. 
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pact in case every infinite subset A of E has at least one point 
of accumulation, that is, H (A) is not null. 

Another basis for a topological theory consists of the system 
(X, ©o)i where ©0 is a subclass of the class © of all subsets E 
of 36. If the sets E0 in the class ©0 are thought of as the open 
subsets of 36, we are led to definitions of point of accumulation 
and of derived set Ef = K{E) which give us a system (3Ê, K). 
Sierpinski [29, pp. 1, 28] has given five postulates for the sys­
tem (36, @o) which are equivalent to the properties I, II , and III 
for the corresponding system (36, K). Hausdorff [17, p. 213] 
considered a system (36, @0) in which the sets £o in the class ©o 
are related as neighborhoods to the points of 36. HausdorfTs set 
of four postulates is more restrictive than the set given above. 

Still another basis for a topological theory is the system (class 
(£) of Fréchet) (36, 2C, L), where* 2C is a class of sequences of 
points of 36, called convergent sequences, and L is a function on 
Sc to 36, assigning to each convergent sequence its limit [Fréchet, 
10, p. 164]. Fréchet assumed: 

(a) If xn~x for every n, then L xn = x. 
(b) If L xn = x, then every subsequence converges and has 

the same limit. 
In such a system derived sets E' = K(E) are readily defined, 

yielding a topological space (36, K). But it is possible for a com­
pact sequence of distinct points (xn) to have only one point 
of accumulation x without being convergent. However, this 
inconvenience may always be removed by extending the range 
Sc of definition of the function L to a maximum without chang­
ing the topological character of the space, that is, without 
changing the function K [Urysohn, 30 ]. If in addition derived 
sets are always closed, the space (36, K) obtained from (36, 2C, L) 
is an accessible space. If this additional condition does not hold, 
a related function H(E) may be defined by the process of Chit­
tenden so that the resulting space (36, H) is accessible. But a 
point of accumulation of a set E in the space (36, H) need not be 
the limit of any convergent sequence of points from E. For 
example, let 36 be the space of all real-valued functions x(t) 
defined on 0 ^ / ^ 1, and define L xn=x to mean ordinary con­
vergence for each value of t. Then the related accessible space 
(36, H) defined by the process of Chittenden (which in this case 
is also a Hausdorff space) is such that the derived set H(E) of 
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a given set E contains all functions obtainable from those of E 
by repetitions of the limiting process. Thus if E is the class of 
continuous functions, H(E) consists of all the Baire functions. 

The notion of limit of a sequence may be defined in any ac­
cessible space (X, H) thus: L xn = x in case every neighborhood 
of x contains all the points of the sequence from a certain place 
on. In the example just mentioned, this definition coincides 
with the original definition of limit. However, in a general ac­
cessible space, a sequence may have more than one limit. In a 
Hausdorff space on the other hand, a sequence can have at most 
one limit. But it is still possible for a set E to have a point of 
accumulation which is limit of no sequence of points from E. 

In discussing functions defined on abstract spaces it seems 
convenient to refer to a numerically-valued function defined on 
an abstract space as an operation, and to use the word trans­
formation to refer to general functional relations between two or 
more such spaces. 

A function or transformation f{x) which transforms an ac­
cessible space X into another accessible space §) is defined to be 
continuous at a point x of X in case for every open set B con­
taining ƒ(x) there exists an open set A containing x such that 
the transform f (A) is contained in B. I t follows that a con­
tinuous function of a continuous function is continuous. Also a 
continuous transform of a connected set is connected. If the 
space X is compact and an operation ƒ is continuous on X, then 
ƒ is bounded on X. If every operation ƒ continuous on X is 
bounded on X, then for each such ƒ the set of its functional values 
is closed. As a corollary we may say that a real-valued operation 
ƒ continuous on a closed compact set E has a maximum and a 
minimum on E. A Borel theorem may be stated for an accessible 
space as follows. Let the set E be compact and closed, and let g 
be a denumerable family of open sets O covering E, in the sense 
that each point of E is interior to a set 0 of the family §. Then 
there exists a finite subfamily of g which also covers E [see 
Hildebrandt, 20, pp. 470, 471; Chittenden, 7, p. 300]. 

A metric space (X, p) consists of a set X of elements x and a 
real-valued operation p defined on XX, with the properties: 
(1) p(xi, x2) = 0 if and only if Xi = x2. 
(2) p(xi, XZ) ^ P ( X I , X2) +p(*3, X2). 
It follows from these two properties that the operation p is 
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symmetric and non-negative. If we agree that L xn = x when 
lim p(xnf # ) = 0 , we see that a metric space is a class (8) of 
Fréchet. I t is also a Hausdorfï space. I t is plain that the dis­
tance function may be altered without changing the topological 
character of the space. For example, we may obtain a new dis­
tance function p* by setting p* = p / ( l +p ) . A fundamental prob­
lem is tha t of determining the conditions under which a topo­
logical space (36, K) is metrizable. That is, when does there exist 
a metric p defining the same points of accumulation for a set as 
the relation K? For certain types of topological spaces the prob­
lem has been solved by Alexandroff and Urysohn, and by Chit­
tenden [ô]. 

In case the Cauchy condition, limm,np(xm, xn) = 0 , is sufficient 
to ensure the convergence of a sequence (xn) to a point x of a 
metric space (36, p), the space is called complete. The property of 
completeness may be lost by a change of metric, so that it is 
not a topological property. However, we may consider the 
topological property of "completeness for some metric p." 
Fréchet prefers to apply the word "complete" to any topologi­
cal space having this latter property. Likewise, from the topo­
logical point of view, a space which is metrizable is called 
metric. In the sequel we shall be interested in many non-topo-
logical properties, so that we shall use the term "metric space" 
to refer to a space (36, p) with a definite associated metric p, 
and the term "complete" will be used only with reference to 
tha t metric, and not in the Fréchet sense.f 

In a metrizable space the Borel theorem holds without the 
restriction of denumerability of the original family % covering 
the set. Moreover, a continuous transformation ƒ of a closed 
compact set in a metric space into a metric space is always uni­
formly continuous. 

We have thus far surveyed the elementary ideas and theorems 
of point-set theory and the fundamental properties of continu­
ous functions as they appear in the foundation of the abstract 
functional calculus or general analysis. Much of the theory of 
abstract sets has been passed by in order to adhere to the plan 
of outlining the analogies of the abstract functional calculus 

t Von Neumann has recently given an interesting discussion of the notion 
of completeness for linear spaces which may not be metrizable. See Transac­
tions of this Society, vol. 37 (1935), pp. 1-20. 
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with the elementary theories of functions of real and complex 
variables. We shall turn next to the consideration of vector 
spaces, and then develop the differential calculus of abstract 
functions. 

A system (36 = [x], 2Ï = [a],+,-, || ||) which has the follow­
ing properties will be called a normed linear space, 

1. 21 is the real number system or the complex number sys­
tem. 

2. + is an associative transformation on 3636 to 36. 
3. • is a transformation on 2136 to 36, associative with multi­

plication of numbers in 2Ï. 
4. • is distributive with respect to + and with respect to 

addition of numbers in 21. 
5. 1 • x = x for every x. 
6. || || is an operation on 36 to 21. 

7. |j*i+*2||^N|+N|. 
8. | | a -* | |= \a\ ||*||. 
9. There is a unique point ® in 36 such that || ®|| = 0. 
A normed linear space is obviously a metric space if we set 

p(xi, X2) =\\xi — X2\\. In case such a space is also complete, it 
has been called by Fréchet "un espace (D) vectoriel complet" or 
a Banach space. Fréchet prefers to distinguish between the 
"points" of space and the "vectors" associated with ordered 
pairs of points [8; 10, pp. 123-146, 201-204]. Thus an "affine 
topological space" consists of a system (36, K) with an associated 
system of vectors ( 0 = [£], + , -, || ||) having certain proper­
ties. For most purposes I can see no gain in this distinction, 
since by selecting arbitrarily an "origin" ® in the space 36 a 
correspondence may be set up between the points x and vectors 
£. Omitting the distinction simplifies the notation and shortens 
the list of postulates. 

In this connection it should be noted tha t in certain inter­
esting linear spaces (36, K) which are also metrizable, no metric 
can be defined in terms of a norm satisfying Postulate 8 along 
with all the others [Fréchet, 8, p. 50]. Two of these are the 
space 9JÎ of all measurable functions with limit defined in terms 
of convergence in measure or approximate convergence, and 
the space (E») of Fréchet consisting of all infinite sequences of 
numbers, tha t is, points in infinitely many dimensions, with 
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limit defined in terms of convergence of each coordinate. For 
this reason Fréchet and Banach have considered vector spaces 
of a more general type than the normed linear spaces, and have 
derived a few properties of linear and polynomial transforma­
tions of such spaces [9; 2, pp. 20-52]. However, this inter­
mediate domain seems not to have aroused much interest. 

A transformation G(x) of a normed linear space X into a 
normed linear space g) is called linear in case 

G{di%i + #2^2) = aiG(xi) + a2G(x2) 

for every pair of points #1, #2 and every pair of numbers ai, a2. 
In case such a transformation is continuous, it is also bounded 
or modular, tha t is, there is a number M such that ||G(#)|| 
:gikf(|#|| for every x. The greatest lower bound of effective M's 
is called the bound or modulus or norm of G and may be denoted 
by M{G). 

An additional concept which has been found useful in con­
nection with linear spaces is that of weak convergence, as dis­
tinguished from convergence in terms of the norm. Schauder 
has proposed the following list of postulates to characterize the 
concept [27, p. 664]. Let Ï be a normed linear space, and let 
wL be a single-valued function defined on a class Sw of se­
quences of elements of ï , and with functional values in H. The 
sequences of Sw are called weakly convergent. The properties as­
sumed are: 

(a) If lim \\xn — x\\ = 0, then wL xn = x. 
(b) If wL xn = x, wL Xn =x', lim an = a, lim an

f =a', then 
wL (anxn+an Xn) =ax+a'x'. 

(c) If a sequence (xn) is weakly convergent, the sequence of 
norms (||#n||) is bounded. 

(d) II wL Xfi •— X and ||tfn|| ^ M, then ||*|| ^ M. 
(e) Every subsequence of a weakly convergent sequence has 

the same weak limit. 
Such a system (ï , Xw, wL) is plainly a class (8) of Fréchet. 
In a given space, various definitions of weak convergence 

having the specified properties are usually possible. For ex­
ample, weak convergence may always be identified with con­
vergence in the norm. In this case the concept would be sterile. 
An important property which may sometimes be obtained by a 
proper choice of the definition is: (Cw) every bounded set is 
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weakly compact, that is, every sequence which is bounded in 
the norm has a weakly convergent subsequence. 

In case we define weak convergence as follows: wL Xfi —-* x i n 
case lim f(xn) =f(x) for every continuous linear operation ƒ de­
fined on £, it may be shown that the weak limit x of a sequence 
(xn) belongs to the extension of the set [xn] to be linear and 
closed [Banach, 2, p. 134]. Also every continuous linear trans­
formation G is weakly continuous, that is, wL G(xn)=G(x) 
whenever wL xn = x [2, p. 143]. 

A functional transformation G of a set X0 into part or all of a 
space §j) is commonly called completely continuous in case it is 
continuous and transforms every bounded subset E of X0 into a 
compact set G(E). Let us say that G is totally continuous in 
case it transforms every sequence which is weakly convergent 
according to the definition just given into a sequence convergent 
according to the norm. I t may be shown by examples that 
neither of these properties implies the other. However, if every 
bounded subset E of X0 is weakly compact, then a totally con­
tinuous transformation G of X 0 is also completely continuous. 
On the other hand a completely continuous linear transforma­
tion G is also totally continuous [Banach, 2, p. 143]. 

I t may not be out of place to remark here that the spaces of 
"modular" functions considered by E. H. Moore in his second 
general analysis theory are all normed linear spaces. Professor 
Moore defined a sequence of modular functions £n to be con­
vergent "in mode one" in case the norms are bounded, and the 
sequence %n(p) converges for each p. He showed that con­
vergence in mode one is equivalent to weak convergence as 
defined above, and that every bounded set of modular functions 
is always weakly compact. 

An important theorem on sets of functional operations is the 
following. Let the sequence of operations gn(x) defined on the 
complete normed linear space Ï have the following properties: 

(1) | gn(aiXi+a2X2) | ^ \ai | |g»(*i)| + \a2 \ \gn(x2) |. 
(2) For every n> | gn(x) | is continuous in x. 
(3) For every x, gn(x) is bounded with respect to n. 

Then the operations | gn{x) \ are continuous in x uniformly with 
respect to n. A more general form of this theorem was proved by 
Hildebrandtf [19]. An immediate consequence of the theorem is 

| The general form of the theorem follows readily by an indirect proof 
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the proposition that the limit f(x) of a sequence of linear con­
tinuous transformations/n(x) convergent for every point of the 
space X is also continuous. Another consequence is the proposi­
tion tha t a multilinear transformation which is continuous in 
each of its arguments separately is continuous in all its argu­
ments together. 

There are several conceptions of differentiation which are 
useful in the functional calculus. Perhaps the first to be used was 
the very general notion of a variation, which gave to the cal­
culus of variations its name. This notion has passed through 
several stages, and we shall notice only one modern form of it. 
Let ƒ be a functional transformation defined on an open set X0 

in a normed linear space 3£, with functional values in another 
such space 2). Suppose that 

(Pi) for every element ôx in $ there exists the derivative 
= 0 ' 

JL f(x + aÔx) 
da 

= ôf(x, ôx). 

This function ôf(x, ôx) is then called the variation of the function 
ƒ at the point x. 

Note that we have used here the notion of the derivative of a 
function g(a) of a numerical variable whose functional values 
lie in a normed linear space. The definition of such a derivative 
is exactly analogous to the one used for numerically-valued 
functions and it has similar properties. A like statement is true 
concerning the Riemann integral of such a function g (a) [see 
Graves, 13], and we shall have several occasions to use such 
integrals. Various definitions have also been given for the cor­
responding generalization of the Lebesgue integral, but we shall 
not need them. 

I t may readily be shown that the variation ôf(x, ôx) of a func­
tional transformation f(x) as defined by statement (Z>i) always 
has the property that it is homogeneous of the first degree in 
ôx. But it may fail to have many of the usual properties asso-

from the special case stated above. The special case in turn is an easy corollary 
of the theorem that a complete metric space is of the second category, and the 
following theorem : If the sequence of non-negative and lower semi-continuous 
operations fn(x) is bounded with respect to n for each point x of a set X0 of 
the second category, then there is a sphere K in the space H on which the opera­
tions ƒ»(#) are bounded uniformly with respect to x and n [Banach, 2, p. 19]. 
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ciated with derivatives of functions of a single variable, as is 
shown by the fact that every function ƒ(x) homogeneous of the 
first degree has a variation at the origin, S/(®, ôx) = ƒ(ôx). In 
order to obtain a theory of differentiation with more content, 
we may suppose tha t the variation §ƒ(#, ôx) of a functional 
transformation ƒ(x) has one or more of the following additional 
properties : 

(D2) ôf(x, ôx) is linear in ôx. 
(D3) ôf(x, ôx) is continuous in ôx. 

/ n N r ILK* + ÔX) ~ K%) ~ W*> ÔX)\\ n 
(D4) lim n — n = 0 . 

110,11=0 | |5* | | 
(Af) 5/(x, ôx) is defined and continuous with respect to x 

at each point x in X0 uniformly for ||Sx|| = 1. 
In case a property (D) holds for every point x of X0 we shall 

denote the corresponding property by (Df). I t may be shown 
that a function ôf (xf ôx) having the relation to ƒ(x) expressed in 
properties (D2) and (D±) always has property (Di) also. More­
over, properties (D{), (Di), and (Di) imply (Dl), provided the 
space §) of functional values is complete. When (^2), (^3), and 
(Z>4) are satisfied, we say that the function ƒ has a total differ­
ential ôf(x, ôx) a t the point x. The importance of the notion of 
total differential has been emphasized by Fréchet on various 
occasions. For example, a function ƒ having a total differential 
at a point Xo is always continuous at x0. Moreover, if also g(z) 
has a total differential a t z0, and g(zo)=Xo, then the function 
/[gO2)] n a s a total differential at z0l equal to ôf[x0, ôg(z0, ôz)]. 
These theorems do not hold for functions having only variations 
in the weak sense expressed by condition (Di) alone. However, 
we shall see later tha t when the function ƒ is continuous and the 
derivative in (Di) is taken with respect to a complex variable 
a, then property (D{ ) implies all the others, provided again that 
the space §) of functional values is complete. 

The differentiability properties of a functional operation or 
transformation ƒ(x) may change when the continuity properties 
of the space 96 are changed by altering the norm \\x\\. For an 
example we may take a calculus of variations integral 

• / 0 
<j>(t} x, %')dt3 
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where the space # consists of all functions x(t) of class C and 
vanishing at / = 0 and / = 1, and ||x|| = max | x(i) |. Then 

ôf[x, ôx\ = I {cfrxôx + <t>x'àxf\dt 
Jo 

has properties (Di) and (D2). Property (Dz) also holds when x(t) 
is of class C", but an example shows that it may fail if x(t) is 
merely of class C. Property (DA) fails in general, since the func­
tional operation ƒ [x] is not usually even continuous. However, 
if we set ||x|| = max {|#(/) | , |# '00|}> then in our example 
ôf[x, 8x] has all of properties (Di), (D{), {Di), {D() in a 
suitably chosen region X0, and the operation ƒ [x] is itself con­
tinuous. 

The variety of useful definitions of differentiation is greater 
when we consider variations of higher order. There is time to 
mention only a few. We shall say that a transformation f(x) 
has an nth variation ônf(x, ox) at a point x in case for every ôx 
there exists the nth derivative 

-^1 f(x + adx) 
dan 

a=0 

s bnf(x, ôx). 

The ttth variation 5n/(#, ôx) is always homogeneous of degree n 
in ôx. Moreover, if we set 

1 
Rn+i(%, àx) = f(x + èx) — f(x) — ôf(x; ôx) — • • • ônf(x; ôx), 

n 

we have 

\\Rn+i(x, aÔx)\\ 
hm = 0. 
a = 0 

There is valid also a generalization of Taylor's theorem [Graves, 
13, p. 173], namely, if f(x) is defined and has an nth variation 
at each point of a convex region X0, and if the space g) in which 
the functional values lie is complete, and if x and x+ôx lie in 
X0, and ônf(x+tôx, ôx) is a continuous function of /, then 

Rn(x, ôx) = J ônf(x + tôx, Ôx)(l - t)n-Ht/{n - 1)!. 
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We might also say that a transformation /(x) has a second 
variation at x0 in case ƒ has a first variation ô/(x, ôx) for each X 
near Xo, and ô/(x, ôx) has a first variation ô2/(xo, ôx, Six) at Xo 
for every ôx. The nth variation would then be defined by induc­
tion, and would involve n independent variations ôxx, • • • , ôwx. 
In case ô/(x, ôx) has the properties (D{), {D(), and (DJ) of a 
total differential, and ô2/(x0, ôx, ôix) has the properties (Z>2), 
(D3)y and (Z>4) for each ôx, according to Fréchet ô2/(x0, ôx, ôix) 
is called the second differential of ƒ at Xo. In this case it may be 
shown that ô2/(x0, ôx, ôix) is a symmetric function of ôx, ôix, 
and hence tha t it is linear and continuous in ôx and in ôix. 
When the space X is complete, it follows that ô2/(x0, ôx, ôix) 
is continuous in ôx, ôix together. 

A function jf(xi, • • • , x/c) of a finite number of real variables 
is commonly said to be of class C(w) on an open region in the 
x-space when it has continuous partial derivatives on that region 
up to and including those of the nth order. We may generalize 
this notion to our abstract situation as follows [Hildebrandt 
and Graves, 18, pp. 135-144]. We say t h a t / ( x ) is of class C' 
on an open region X0 in case ƒ has a total differential ô/(x, ôx) 
at every point of Xo, which also satisfies condition ( IV) . The 
function ƒ is of class C(w) on X0 if ƒ is of class C' and ô/(x, ôx) 
is of class C(n_1) uniformly for ||ôx|| = 1 . When w ^ 3 , this im­
plies, for example, tha t ô3/(x, ôix, ô2x, ô3x) is continuous in ô3x 
uniformly for ||ôix|| =||ô2x|| = 1 . Using this definition it is pos­
sible to prove, for example, that if f(x) is of class C(n) on X0, and 
if g(z) is of class C (n) on Z0 and has its functional values in X0 

then the function h(z) =f[g(z)] is of class C(n) on Z0 [Hilde­
brandt and Graves, 18, p. 144]. While the proof of this theorem is 
rather difficult, the other formal rules of the differential cal­
culus which have meaning in this general situation are readily 
derived. 

In case X and §J are complete normed linear spaces with the 
complex number system 31 as the associated number system, we 
may develop an interesting theory of analytic functional trans­
format ions /on a region X0 to §). The essential features of this 
were indicated in certain special cases by Gateaux [ l l , 12]. 
Let us consider first the case of a function ƒ(z) on A 0 to §), where 
A o is an open set in the complex plane. The definition of de­
rivative of f(z) and of ordinary point for f{z) have the usual 
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form. A function ƒ(z) is said to be holomorphic on a set S in case 
every point of S is an ordinary point for ƒ(z). Line integrals of 
such functions have the usual elementary properties, and 
Cauchy's theorem and integral formula hold true. A Laurent 
expansion for ƒ(z) about an isolated singularity may be derived 
in the usual way, and the notion of analytic continuation also 
generalizes. All this was indicated by Wiener [31 ]. 

Let us turn now to the general case of a functional trans­
formation f(x) defined on an open set X0 in a normed linear 
space. We say tha t a point Xo is an ordinary point for ƒ in case ƒ 
is continuous and has a first variation at each point x near x0. 
If each point of X0 is an ordinary point for ƒ (x), then ƒ is holo­
morphic on X0. 

A transformation f(x) on $ to g) is called a polynomial trans­
formation in case jf(xi+Xx2) is a polynomial in the numerical 
variable X with coefficients in the space §), for every Xi and X2 
in 36. This definition reduces to the ordinary meaning of the 
word polynomial in case ƒ is a numerically-valued function of a 
finite number of numerical variables. A continuous and homo­
geneous polynomial transformation Pw(x) of degree n may be 
polarized to give a multilinear form Q(xi> x2, • • • , xn) linear and 
continuous in each of its arguments, such that the relation 
Q(x, • • • , x) =Pn(x) holds. The &th differential of Pn(x) is then 
Q(ôiX, • • • , ôkX, x, • • • , x) if k^n, and vanishes if k>n. 

Let the transformation ƒ(x) be defined by a series of the form 

(i) ƒ(*) = ! > . ( * ) . 
0 

There is a theorem on the nature of the region of convergence of 
such a series, analogous to Abel's theorem for ordinary power 
series. Let X0 denote the open set remaining after discarding the 
boundary points of the set on which the series (1) converges. 
Then if the point x is in X0 and | X | ^ 1, the point \x is also in 
X0. We shall call a region X0 having this property a region of 
circular type about the origin. In order to obtain interesting 
properties, we assume that the series (1) converges uniformly 
on sets E which are compact on X0. An equivalent condition 
states tha t every point x0 of the region X0 has a neighborhood on 
which the series converges uniformly. I t follows that the sum 
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f(x) of the series is holomorphic on X0f and in fact of class 

Conversely, we have also a Taylor's theorem. That is, if a 
t ransformat ion/^) is holomorphic on X0 , then about each point 
Xo in the region X0 the transformation f(x) is expansible in a 
series 

00 

(2) f(x) = X ) Pn(%o; X — Xo) 
0 

of continuous homogeneous polynomial functions of (x — xo), 
converging uniformly on a neighborhood of x0, so that f(x) is 
necessarily of class C(o0). In case Xo is a region of circular type 
about the point x0} the Taylor expansion (2) for f(x) converges 
uniformly on sets E compact on X0. Also | |/(#)| |, being con­
tinuous, is bounded by a constant M for \\x — x0\\ g p , where p 
is sufficiently small, so that by Cauchy's integral formula, 

||P»(*o; x - *o)|| ^ If( | |* - *o||/p)n. 

The sum of a series of functional transformations, f(x) 
=y£2fn(x), where each fn{x) is holomorphic on X0t is also holo­
morphic on Xo, provided the series converges uniformly on sets 
E compact on X0 . Moreover, if ƒ on X0 to §) is holomorphic on 
Xo and g on C/0 to XQ is holomorphic on Uo, then the trans­
formation h(u) =f[g(u)] is holomorphic on Z70. If ƒ(#, u) is a 
function of two points x and u which is continuous in x and u 
together and holomorphic with respect to x and u separately 
for x in Xo and u in Z7o, then ƒ(#, w) is a holomorphic function 
of the composite variable (x, w), and conversely. Finally, we 
may make use of the process of analytic continuation. However, 
we do not expect to secure much information about the nature 
of the singularities of an analytic functional transformation 

PART I I . IMPLICIT FUNCTION THEOREMS AND APPLICATIONS 

We may apply the preceding theory to study the solutions of 
various sorts of equations. Thus it may be desired to solve the 
equations 

fi(Xl, ' ' ' , Xtn, VU • • • 9 Jn) = 0 , ( * = ! , • • • , » ) , 
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for the y's as functions of the x's. This system of equations 
may be written ƒ (x, y) = 0, where the range of x is a region of the 
w-dimensional x-space, the range of y is a region of the n-di-
mensional y-space, and the functional values of ƒ are in the y-
space. The differential equation ƒ(#, y, dy/dx)=0 has for the 
unknown a function y = y(x) in the space of functions having 
continuous derivatives. The dependence of the solution y{x) on 
the function ƒ may be investigated by the methods of the func­
tional calculus [Bliss, 4 ] . From our general point of view, 
algebraic equations, differential equations, integral equations, 
and many other types are all gathered under one head. How­
ever, we may still wish to consider a variety of hypotheses, and 
there are different methods available. 

The simplest method is that of successive approximations. 
Let (§), p) be a complete metric space, and let (yo)a denote 
the neighborhood of y0 consisting of those points y for which 
p(yy yo)<a. Consider an equation of the form 

(3) y = F(y), 

where the transformation F is a function on (yo)a to g) with the 
properties : 

(a) I t satisfies a Lipschitz condition with constant k<l, that 
is, p(F(yi), F(y2))^kp(yi, y2). 

(b) p(F(yo), y o X a - * ) ^ 
Then the method of successive approximations shows at once 
that there is a unique solution of equation (3) in the neighbor­
hood (yo)a\ tha t is, there is a unique fixed point of the trans­
formation y = F(y). In case the transformation F depends on a 
parameter x, which may be a point in an accessible or a metric 
space, the solution of equation (3) becomes a function y= Y(x), 
and the theorem is properly called an implicit function theorem. 
If the function F(x, y) is continuous in its two arguments, then 
the solution y = Y(x) will also be continuous [Hildebrandt and 
Graves, 18, pp. 133-135]. 

Suppose we wish to consider an equation of the form G(y) = @, 
where G is a transformation defined on a neighborhood (yo)a 

with functional values in a space 3> and §) and S a r e complete 
normed linear spaces. We may apply a generalization of New­
ton's method to obtain a solution (a process which is equivalent 
to reducing the equation to the form (3) and applying the 
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method of successive approximations), provided : (a) the point 
y o is a sufficiently close approximation to a solution of the equa­
tion, (b) the function G has a differential SG(jo, Sy) at y0y and 
(c) this linear transformation 8G(y0, ôy) on g) to S has an inverse. 

The question of the existence and properties of an inverse for 
a linear transformation G has been the subject of extensive in­
vestigations. I shall mention only a few elementary theorems. 
The first states that if a continuous linear transformation G has 
an inverse H, then H is also linear and continuous [Banach, 2, 
p. 41 ]. The second states that if the space §) is complete, and if 
the continuous linear transformation G of §) into all or part of 
itself has norm M(G) less than unity, then the transformation 
K(y) =y — G(y) always has an inverse which may be expressed 
in terms of the usual series of iterates of G [Banach, 1, p. 161 ; 
Hildebrandt and Graves, 18, p. 145]. The third may be stated 
as follows. Let the space g) be complete, and let G(y, w) be a 
continuous linear transformation of g) into S which depends also 
on a parameter w ranging over an accessible space. Suppose that 
G is continuous in w at w = Wo uniformly for ||y|| = 1 , and that 
G(y> Wo) has an inverse. Then for w in a sufficiently restricted 
neighborhood of w0, G(y, w) has an inverse H(z, w), and H is 
continuous at w = w0 uniformly for ||2i||=l [Hildebrandt and 
Graves, 18, p. 146]. 

A general implicit function theorem may be stated as fol­
lows. Let 26, §), and 3 be normed linear spaces, of which g) and 
S are also complete. Suppose that G(x,y), with functional 
values in 3» is of class C(n) on a region R in the composite space 
(36, §)), and let (x0, y0) be an initial solution of the equation 

(4) G(x, y) = ® 

at which the partial differential ôî/G(x0, 3>o; Sy) has an inverse. 
Then in a sufficiently small neighborhood (yo)a the equation (4) 
has a unique solution y = Y(x) defined on a neighborhood (#o)&, 
and the solution Y(x) is also of class C(n) [Hildebrandt and 
Graves, 18, p. 150]. 

From our discussion of analytic functional transformations it 
is plain that when the transformation G(x, y) is analytic, the 
solution y = Y(x) is also analytic. 

I t is frequently of interest to know how far a solution y = Y(x) 
of equation (4) may be extended. Let us define a sheet of points 
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in the composite space (96, §)) to be an arcwise connected set 
S with the additional property that for every point (xi,yi) 
of 5 there are positive constants a and b such that no two points 
of S in the neighborhood (#i, yi)a have the same projection x, 
and every point x in the neighborhood (xi)b is the projection of a 
point (x, y) of S contained in (xu yi)a> Then under the hypoth­
eses of the theorem just stated there is a uniquely determined 
maximal sheet S of solutions of equation (4) which (a) passes 
through the initial solution (x0> yo)î (b) is composed entirely 
of points (x, y) a t which the differential ôyG(x, y; ôy) has an in­
verse ; and (c) has for its boundary points only boundary points 
of the region R and points at which 8yG(x, y; by) ceases to have 
an inverse. This theorem is readily proved by defining S as the 
logical sum of all sheets having the properties (a) and (b). I t 
may be noted tha t a sheet of solutions determines a single-
valued function Y(x) in a neighborhood of each of its points, and 
each of these functions is of class C(w). 

Various applications of the general implicit function theorem 
described above have been made to differential, integral, and 
integro-differential equations, and to the calculus of variations 
[Graves, 14, pp. 535 ff. ; 15; 16, p. 677]. The theorem is a very 
powerful one, and simple in application. The principal problem 
in any special case is to determine when the partial differential 
ôyG(x} y ; ôy) has an inverse. Let us consider a simple application 
to an ordinary differential equation with boundary conditions, 

(5) y" = A(/, y , y ' ) , y(o)=A, y(b) = B. 

Let §) be the space of all real functions y{t) of class C' on 
a^t^b, with ||y|| defined in the usual way as the maximum of 
I y if) 11 I y'W \y I y"(t) I o n the interval. Let £ be the space of 
all real functions h(t, y, y') continuous in / and of class C(m) in 
y and y', for (/, y, y') in a certain bounded region R. Let ||&|| be 
the maximum of \di+''h/dyidy'3'\ for (t, y, y') in R and i+j 
= 0, • • • , m. Let S be the composite space consisting of all 
continuous functions z(t) and pairs of numbers A} B, with 
||s, A, J5|| = maximum of | z(t) |, | A |, | B |. Then the equations 

y" - K*, y, y') = *(0, y (a) = A, y(b) = B, 

define a transformation G(y, h) of class C(m) on a region of the 
composite space (§), $) to the space £. In this special problem 
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a necessary and sufficient condition that the partial differential 
8yG(y, h ; S3;) have an inverse transformation is that the equation 
of variation 

(6) by" - hyby' - hyby = 0, by {a) = 0 = ôy(b), 

be incompatible, tha t is, have only the solution 83;=0. Hence if 
an initial solution of equation (5) is known at which (6) is in­
compatible, this solution may be continued, allowing the func­
tion h and the end values A and B to vary until a point is 
reached which lies on the boundary of the region of admissible 
points, or at which equation (6) becomes compatible. This solu­
tion y{t) = Y[h, Ay B 11] will be of class C(m) as a function of h, 
Af and B. 

This result may be applied to the calculus of variations as 
follows. Let y=y(t) be an extremal for an integral 

f ƒ(*, y, y')dt 
J a 

joining two points (a, A) and (by B). Suppose that 

\') Jyy Jv't) Jy'vi Jy'y' 

have continuous partial derivatives up to order m with respect 
to y and yf, and let ||/|| be defined as the maximum of the ab­
solute values of the partial derivatives (7) and their partial 
derivatives up to order m. Suppose that fy'y'^O along the 
initial extremal, and that the end points of this extremal are 
not conjugate. Then when Ay By and the integrand ƒ are varied, 
the extremal joining (a, A) and (by B) will vary continuously and 
be of class C(m) as a function of ƒ, A, and By and the process may 
be continued until an extremal arc is reached which either is 
singular, tha t is, has fy'V'= 0 at some point, or else has end 
points which are conjugate. If the initial extremal is a minimiz­
ing extremal, then the varied extremal will continue to furnish 
at least a weak relative minimum for the integral. 

The method described may be applied also to partial differ­
ential equations of elliptic type. An essential theorem for that 
purpose is the one which states that if a linear elliptic partial 
differential equation of the second order has at most one solu­
tion taking given boundary values, then it always has a solution 
for arbitrary continuous boundary values, at least when the 
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shape of the boundary is sufficiently restricted. Schauder has 
recently given a proof of this based on the functional calculus 
and on the known solvability of the equation 

(8) D(u) = uxx + uyy = f{%, y), (u = <j> on the boundary), 

and known inequalities affecting the solutions [28]. Schauder 
gives the theorems for the case of n independent variables, but 
for simplicity they are stated here for the case n = 2. Inequali­
ties affecting the solutions of the equation 

(9) L(u) s a(x, y)uxx + 2b(x, y)uxy + c(x, y)uyy = f(x, y), 

(u = 4> on the boundary), 

where a > 0 , ac — &2 = 1, are first derived. All the functions 
appearing in (9) are supposed to be a-Hölder continuous, 
( 0 < a < l ) , and the norms ||w||, ||/||, and ||</>|| involve the Holder 
constants of those functions. The coefficients a, &, and c are 
supposed to be /3-Hölder continuous, where &>a. The inequali­
ties proved yield a type of weak compactness of the set of solu­
tions of the one-parameter family of equations 

(10) KQi, u) s — = ƒ, 

(u = <j> on the boundary), 

where PÇK) is a certain function which is continuous and not 
zero for O ^ X ^ 1, and ||/|| is bounded. Hence if (10) has a solu­
tion u = un for X = \ n , and X„ approaches X, then a subsequence 
of the sequence un is weakly convergent to a solution u which 
also satisfies the inequalities. Now the transformation K(k, u) 
is continuous in X and u and linear in u, so that it will continue 
to have an inverse for X near a value Xo for which it is known 
to have an inverse. Since the family (10) reduces to equation (8) 
for X = 0 and to equation (9) for X = 1, and equation (8) always 
has a unique solution, it follows tha t equation (9) always has a 
unique solution. Let the inverse transformation so defined be 
denoted by u — T{j). Then the general elliptic linear equation 

(11) L(u) + d(x, y)ux + e(x, y)uy + g(x, y)u = k(x, y), 

(u = (j> on the boundary), 
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may be transformed into 

(12) f=h-d~T(f)-e-^T(f)- gT(f) m h + S(f), 
ox dy 

and the transformation S (J) turns out to be completely continu­
ous. Thus by use o£ the Riesz theory of linear transformations 
of the form (12), where S(f) is completely continuous [Riesz, 
24; Hildebrandt, 21 ; Schauder, 26], it follows that if (11) has 
at most one solution, then it always has a solution. 

The foregoing proofs are made first for the case when the 
boundary values c/> are supposed to have continuous second de­
rivatives satisfying a Holder condition, and the theorems are 
extended to the case of arbitrary continuous boundary values 
by use of certain additional inequalities. This proof by Schauder 
is a good example of the advantages offered by the general meth­
ods of the functional calculus. No use is made of an elementary 
solution or of Green's function. 

A number of other fixed point theorems and implicit function 
theorems have been proved for general spaces by topological 
methods. We remark that topological methods yield no informa­
tion about the differentiability of functions defined implicitly. 

Throughout the following paragraphs it is understood that 
the spaces 36 and g) are complete normed linear spaces. 

A very general fixed point theorem is as follows. Let ƒ be a 
continuous transformation of a convex closed set 5 in the space 
X into a part of itself, such that the transformed set f(S) is 
compact. Then the transformation ƒ leaves one point of 5 fixed. 
A fixed point theorem for ^-dimensional space was proved by 
Brouwer. The proof of the general theorem depends on an ex­
tension of the Brouwer theorem, and is made by defining trans­
formations fn which approximate the transformation ƒ on n-
dimensional subsets of the set S. The first extension to function 
spaces was made by Birkhoff and Kellogg in 1922 [3]. Theorems 
for general spaces were proved later by Schauder [25]. 

The following theorem on inversion of functional transforma­
tions is readily proved. Let y = F(x) be a transformation defined 
and continuous on an arcwise connected region X0 of the space 
£, which is locally invertible, tha t is, the equation y = F(x) has 
a unique continuous solution near each of its solutions. Suppose 
also tha t whenever the sequence F(xn) converges, the sequence 
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(xn) is compact on X0. Then F is a topological transformation 
of X0 into the whole space g). I t is clear that a fixed point 
theorem for a transformation G{x) may be obtained as a corol­
lary by setting F(x) = x — G(x). The theorem may be proved as 
follows. Let Yo = F(Xo), and let (yn) be a sequence of points of 
Fo converging to a point y'. Then the corresponding sequence 
(xn) is compact on X0 and hence there is a subsequence (xnk) 
having a limit # ' in X0. Since i7 is continuous, y' = F{x'). Hence 
the set F 0 is closed. I t is also open, since the transformation is 
invertible near each of its points. Hence F0 = ?). If the inverse 
transformation were not single-valued, there would be a curve 
B in Xo joining two distinct points whose image C in the space §) 
is a closed curve. By a continuous deformation of the curve C 
into a point the curve B must also be deformed into a point, 
which easily leads to a contradiction. Essentially this theorem 
and proof were given by Paul Levy in 1920 [23]. Caccioppoli 
has recently given an exposition of it in general form [5]. 

Schauder has recently proved theorems showing that under 
certain circumstances the uniqueness of the solution of an equa­
tion y = G(x) implies the existence of a solution (#, y) for every y 
near ;y0, where (xo, 3>o) is a solution. One of his theorems is as 
follows [27, p. 686]. Let there be defined in the space 36 a weak 
convergence satisfying the postulates set down in Part I. Sup­
pose also tha t every bounded set is weakly compact. Let F and 
H be transformations defined on an open set Xo of $, and let F 
be totally continuous, in the sense that it transforms a weakly 
convergent sequence into a sequence converging according to the 
norm. Suppose that H satisfies a Lipschitz condition with con­
stant k < 1, and transforms a weakly convergent sequence into 
a weakly convergent sequence. Then if G(x) =x+F(x)+H(x) 
establishes a one-to-one correspondence between the open set 
Xo and the transformed set G(X0), G(X0) is also an open set. 
Again the proof is made by constructing approximating trans­
formations defined in subspaces of a finite number of dimen­
sions. Schauder applied this theorem to show that in case a par­
tial differential equation of elliptic type 

F(xj y} z, p, q, r, s, t) = \p(%, y), (z = <j> on the boundary), 

is known to have at most one solution, and if it has a solution 
for ^ = ^ o , 0 = 0 o , then it has a solution for ^, 0 near ^0, 0o-
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Another implicit function theorem has been given by Leray 
and Schauder [22 ] for equations of the form 

(13) x = F(x,k). 

Let ^ be the closure of a bounded open set R in a space X, and 
let K be a finite closed segment of the real axis. Let the trans­
formation F be defined and continuous on RK, and continuous 
in k uniformly with respect to x. Moreover, let the set of func­
tional values F(R> K) be compact, and suppose equation (13) 
has no solution with x on the boundary of R. Suppose that a t 
an initial point k0 of the interval K, the equation (13) has a 
finite number of solutions x = Xj, and that the sum of the "in­
dices" of these solutions is not zero. This last hypothesis is satis­
fied, for example, in case there are an odd number of solutions 
near each of which the equation y = x — F(x, ko) has at most one 
solution. Then equation (13) has a continuum of solutions (x, k) 
on which k takes all the values of the interval K. This theorem 
has the advantage of being a theorem in the large, and of not 
requiring uniqueness of the initial solution, but the other hy­
potheses are rather stringent. The proof again depends on trans­
formations F€ which approximate the transformation F on sub­
sets of R of a finite number of dimensions. 

All of the theorems which have been quoted have their appli­
cations to boundary value problems for differential equations 
and to integral equations, both linear and non-linear. The field 
seems to be a fruitful one for further study. 
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