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A CONVERGENCE FACTOR THEOREM IN T H E 
THEORY OF SUMMABLE SERIES* 

BY H. L. GARABEDIAN 

1, Introduction. The object of this paper is to write down suffi­
cient conditions to ensure that any definition of summability of 
the convergence factor type\ be more effective than or include% 
the definition of de la Vallée-Poussin, 

A series 
00 

(1) ^ Wn = Wo + Wi + W2 + ' • ' 

is said to be summable by the method of de la Vallée-Poussin 
(or summable VP) to the sum S if lim„^00^n = 5, where 

r̂-̂  ^2w, n—k 
Vn = UQ + 2^ — Uk 

, _ k=*l C2n, n 
(2) 

» n{n - 1) • • • O - k + 1) 
= Mo + z< Uk. 

£î (n + \){n + 2) • • • (» + k) 
For the sake of convenience, we shall define the series (1) to 

be 0-summable to the sum 5 provided that the set of functions, 
<t>n(oi), (# = 0, 1, 2, • • • )> are defined for a set of values J5(a) 
having at least one limit point ao, not of the set; the series 
^2^Lo<l>n(oi)un converges over E(a) ;3ind 

00 

l im ]T) <t>n(a)un = S. 
a->a0 n=0 

The theorem studied in this paper is stated as follows. 

THEOREM. If (i) the series (1) is summable VP to the sum S, (ii) 
the set of functions, 0w(a), (w = 0, 1, 2, • • • ), defined f or a set of 
values E(a) having at least one limit point ao, not of the set, satis­
fies the conditions 

* Presented to the Society, September 5, 1934. 
t C. N. Moore, Transactions of this Society, vol. 8 (1907), p. 299. 
t W. A. Hurwitz, this Bulletin, vol. 28 (1922), p. 17. 
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(ai) lim 0n(«) = 1| (ai) hm vn4>n(a) = 0, over E(a), 
ct—*ctQ n—> oo 

(^3) ^ C2n, n Z^+2n,2,A 2 w+ 20 2 X +n(a:) < K, over E(a), 

where v and K are independent of a and n, and v>eb> (iii)* 
</>-summability includes Cesàro summability of arbitrary integral 
order; then the series ^2^L^>n(oL)un converges over E(a), and 

00 

lim ]T) <t>n(a)un = S, 

We conclude this introduction with the remark that the raison 
d'être of this theorem may be traced to a somewhat similar theo­
rem, due to Bromwich,t in which sufficient conditions are given 
in order that 0-summability include (Ck) summability. I t will 
be observed that an analogy can be drawn between the condi­
tions of the present theorem and those of the Bromwich theorem 
despite the discrepancy in complexity of the problems involved. 

2. Proof of Theorem. At the outset we shall consider the de la 
Vallée-Poussin matrix and its inverse, denoted respectively by 
(VP) and (VP)- 1 , and their use in satisfying some of the exigen­
cies of the problem at hand. 

The matrix (VP) is of triangular type, that is, 

(VP)-

1 

1 

1 
1 

1 

0 

1 

2 

2 

3 

3 

4 

0 

0 

1 

6 

3 

10 

0 • • • II 

0 

0 

1 

20 

* Let us recall that VP summability includes (Ck) summability, that is, 
Cesàro summability of order k. This result was obtained independently and 
virtually simultaneously by T. H. Gronwall, Comptes Rendus, vol, 158 (1914), 
p. 1664, and C. N. Moore, Comptes Rendus, vol. 158 (1914), p. 1774. 

t Mathematische Annalen, vol. 65 (1907-08), p. 351. 
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The inverse matrix (VP)~l is known to be* 

boo 0 0 0 

*io bu 0 0 

&20 #21 #22 0 

bso bzi b$2 b$z 

(7P)-> = 

1 

- 2 

2 

- 2 

0 

2 

- 8 

18 

0 

0 

6 

- 3 6 

0 

0 

0 

20 

The matrix ( F J P ) - 1 gives the solution of the equations (2) for 
the u's in terms of the v's: 

n 

( 3 ) Mo = Vo, Un = 2J2 (— l)n~kCn,k Cn+k-\,kVk, 
k=0 

Note that 

( » = 1 , 2 , 3 , . - • ) . 

#00 = 1> *n* = 2 ( ~ l ) n~*C n , fcC n+fc-l , fc , 

(* = 0, 1, 2, • • • , n;n ^ 0). 

Form the series 

00 

(4) ]£*n(a)«», 

and replace ww in (4) by its value in (3) to get 

oo n 

(5) Z Z ' n i k ^ a h . 
n=0 A;=0 

At this juncture, we find it expedient to pause temporarily to 
prove the following lemma. 

* George Rutledge, Journal of Mathematics and Physics, M. I. T., vol. 11 
(1932), p. 76. 
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LEMMA l. 

oo n oo oo 

(6) X) 12 Kk<l>n(ot)Vk = 2 ]C bkn<t>k{0L)Vn. 
n=0 &=0 n=0 k=n 

The right-hand member of (6) is obtained from (5) by an 
interchange in the order of limits. In order to prove this identity 
we must establish completely the validity of the infinite proc­
esses involved. 

We find it convenient to write out one of the members of (6) 
in the form of a double series : 

&oo<Mo+ 0 + 0 + 0 + 0 + • • • 

+b1Q<t>iVo+bn<t>iVi+ 0 + 0 + 0 + 

(7) +#2O02flO + #21<Ml + 62202Ï>2+ 0 + 0 + 

+ ^30^0+^31^3^1 + ^3203^2 + ^3303^3+ 0 + • • • 

+ 
The left member of equation (6) represents the double series (7) 
summed by rows, and the right-hand member of (6) represents the 
series (7) summed by columns. We wish to show that the sums 
obtained in these two different fashions are identical. Now, it 
follows from a theorem due to Pringsheim* that if the rows and 
columns of a double series converge, and if the double series is 
convergent, then the interchange of limits implied in (6) is per­
missible. We shall first show that the individual rows and the 
individual columns of the series (7) converge, and secondly exe­
cute the more difficult task of showing that the double series 
itself converges. 

The individual rows of (7) converge since the terms are all 
zero from a certain point on. The individual columns are series 
of the form ^SLn4>k(pL)bknVn9 O = 0, 1, 2, • • • ), or 

(8) 

2 H ( - l)k~n Ck,n Ck+n-l,n<l>k(<x)Vn, 

( » - 1,2, • • • ) , 

\<t>o + 2'Z(-l)kM<x)]vo. 

* Bromwich, Theory of Infinite Series, 1st or 2d edition, §30. 
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We have bkn = 0[(k+n)\/(n\)2(k-n)\]. Using Stirling's well 
known formula, for the T-function, we can write 

(9) bkn = 0[(k + n)k+n/{n2n(k - if)*-."}]. 

Now, set k = n+m1 where m is a positive integer, and we obtain 

bkn = 0[(2n + m ) 2 n + m / {n2nmm} ] = 0[4=neme2n]. 

Substituting m = k — n in this last expression we can write 

(10) bkn<j>k = 0[4nek+n<f>k] = 0[ek+*n4>k] = 0[e"4>k]. 

From condition (a2) of the hypotheses we have <t>k~0(p~b)> 
where v>eB. Consequently, it follows from (10) that 

(11) J*n**=0(6-*) . 

The equation (11) implies the convergence of the series (8) and 
hence the convergence of the individual columns. 

Let us now form the sum, spq, of the pq terms taken from the 
first p rows and the first q columns of the series (7). The conver­
gence of spq as p and q tend to infinity in such a manner that 
P^q follows from the existence of the left-hand side of (6). Note 
that the existence of this expression is in turn implied by the 
existence of the series (4). To establish the convergence of the 
series (4) we recall first of all that, since lim/î oo Vk exists, Vk is 
bounded. Then, from (9) and the discussion above it follows 
that bnkVk = 0(en+*k), un=jyk=0bnkvk = O(e*n) and <l>nun = 0(e-n). 
This suffices to prove the convergence of the series (4). For the 
case p>qwe must show that the additional terms included are 
negligible. This additional block of terms is 

bq,Q<l)qVQ + bq,l4>qVl + ' * * + bq,q(t>qVq 

+ ba-n,0$3+lî>0 + bq+l,l<l>q+iDi + * • * + bq+ltq<l>q+iVq 

+ bPtQ<t>pVo + bPti4>pVi + • • • + bp,q<t>pVq, 

Designate an arbitrary one of these terms by bi$&j, 

i = q,q+ 1, • • • ,p; j = 0, 1, • • • , q; p à i è q; g è j à O . 

We have 

bij(t>iVj = 2(— 1 ) * - > C < , / C * H - I . / * # / * 
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From (11) and the boundedness of v, it follows that 

(13) birfiVi = O ( ^ ) • 

The equation (1\3) implies that the sum of the terms bij<j>iVj of 
the expression (12) can be made small enough to be negligible 
by taking a sufficiently large. In turn, this implies the conver­
gence of spq. Accordingly, we have established the validity of 
the identity (6). 

Now, to return to our main argument, it follows from (4), (5), 
and the lemma above that we can set F(a) =^2n*Lo<l>n(où)un and 
write 

00 00 

(14) F (a) = ^CanVn, can = ] £ <t>k(a)bkn. 
w=0 k—n 

Since limn.*ooVn = S, it remains to show that the method of sum­
mation, of the convergence factor type, defined by (14) is regu­
lar* which is to say that \ima+*QF(a) =S. Accordingly, it is re­
quired in the present case that 

(bi) lim Can = 0 for every n, 

00 

(b2) lim 2 ^ Can = 1 , 
a-»a0 n=0 

00 

(b,) Z I can | < K over E(a), 

K independent of a. 
It remains to prove that the conditions (b) are fulfilled when­

ever the conditions of the theorem are satisfied. Recall that 

oo 

(15) c a 0 « * o + 2 £ ( - 1) »*»(«), 

and, for n= 1, 2, • • > , 
00 

(16) c „ = 2 E ( - l)*-"C»,»Cfc+_i.»**(o), 

and notice that, since &/bW = 0, (k<n), 
00 00 

(17) Can = ] C <f>k(ot)bkn = z l <l>k(ot)bkn' 
fc=w fc=0 

* Hurwitz, loc. cit., p. 20. 
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At this point, the following identity* proves to be of funda­
mental importance: 

(18) f>*»** = (1 - a0^2£W*»+l>**, (| x\ < 1), 

where 

$k(2n+l) -_. C2n+/b+l,2n+l #0n + C2n+fc, 2n+l # ln 

+ C2n+fc-l ,2n+1^2n + • • • + C2n+ l ,2n+ lÔ kn • 

It results at once from (18) that 

(19) 

- e(2n+X) (2n+l) (2n+l) 
0&n =Ojfc — C2n+2,1 O fc-1 "7" <-2n+2, 2 Ofc-2 

— * ' " i " V"~ L) ^2n+2 ,2n+2^A; -2n-2 , 

where it is understood that when a negative subscript occurs in 
the formula the corresponding 5 ( 2 n + 1 ) is to be replaced by zero. 

Substitute the value for bkn in (19) in the equation (17) to get 

- V* rc
(2n+1) r e <2n+l) e ( 2 n + l ) 

Can — 2-J ^k — <->2n+2,l ^k—1 ~T ^2n+2,2 Ojfc-2 

(20) *=°L 

i ( n 2 n + v c(2w+1) L / \ 
— * • * T" \— J J C2n+2,2n+2 0fc-2n-2 9 & W * 

Ordering the terms of (20) with respect to 5/b(2w+1), we obtain 
formally 

*=o L 

+ ( - l)rC2,H.2.r**+r(a) + ' ' ' + (~ l)2,l+V*+ftM-«(«) 1 , 

Can 
fc=0 

or 

(21) Can= E « 2 » + l ) A 2 ^ W , 

where we notice that Sk
(2n+1) = 0 , (k<n). In order to justify this 

* Bromwich, loc. cit., 1st éd., p. 311. 
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last step it will suffice to establish the absolute convergence of 
the series 

00 

(22) £ S?T W<*), (i = 0, 1, 2, • • • , In + 2). 

To this end and for further reference we delay once again to 
prove a fundamental lemma. 

LEMMA 2. 

(23) S*<»»+1> = C 2 n ,nCx + 2n,2n, 

(k = 2X + n\n = 1, 2, • • • ) . 

From equation (18) we have the formula 

I.S. k(2n+l)xk 

(24) M 

= 2(1 - *)-<2»+2>x; ( - i)»-«c*.„c**_i..**, 
Ar=0 

which is needed later in the proof. 
Multiplying the binomial expansion of (l+#)*"(2w+1) by 

C2n w#w(l - x ) , w e obtain 

xn(l — x) 
^2n, n 

(1 + x)2n+l 

(25) 
2 °° 

- 7 -^ E ( - D'(» +./)(2» + i - 1) • • • 0' + D*'+». 

Multiplying both sides of (25) by ( l - x ) _ ( 2 n + 2 ) and setting 
j+n = k in the right member, we get 

C2„,„*"(l - **)-«*«> 

<26> 
= 2(1 - *)-<2»+2>x; ( - i )*-»c*, n c n f *_i ,„**. 

Now, eliminating the expression on the right-hand side of (26) 
between formulas (23) and (26), we have 
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J^Sk(2n+l)xk = C2n.n*W(l - *2)-W»+,> 

fc=0 

= C 2 w , n ] C Cx+2n,2n^2X+n. 

Our lemma follows at once from this identity. 
From (22) and (23) we have 

^ Sk-i 4>k{a) = S Sm </)m+t-(a) 

— C2n,n Z^ C\+2n,2n <̂2X-f n-f»(«)» 

Moreover, it is easy to prove the formulas C\+?n,2n =0(ex) and 
02\+n+< ( a )=0 [e~ ( 2 X + o ] . Consequently, 

CX+2n,2n02X-fn+t(«) = 0 [ e ~ ( X + i ) ] , 

and the absolute convergence of the series (22) is assured. 
Now, formulas (21) and (23) are used to eliminate Sk{2n+l) 

and obtain 
oo 

(27) Can = C,n,n J ) Cx+2n.2n A2"+202X+n(<*), (fl = 1, 2, • •. • ) • 

x=o 

Furthermore, it is easily proved from (IS) that 
00 00 

(28) ca0 = - *„(«) + 2 £ ( - l)*0*(a) = E A*Ma). 
A;=0 X=0 

Accordingly, formula (27) also holds for n=0. 
We are now prepared to discuss the conditions (b), first of all 

(bi). Since the series ^kLo( — l)k is summable (CI) to the value 
1/2, and since, by condition (iii) of the hypotheses, (^-summa­
bility includes (CI) summability, it follows from (28) that 
lima~>a0Cao = 0. Consequently, the condition (bi) is satisfied for 
n = 0. Let us now focus our attention on the series 

00 

E C * . » C * f » _ i . » ( - 1)*-", ( « = 1 , 2 , • • • ) • 
k—n 
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If we form the Cesàro mean of order 2n + l for this series and 
use formula (23), we have 

l i m W ^ V C ^ n + i . S n + l 
k—>oo 

= l i m C 2 w , n C \ + 2 n , 2 n / C x + 4 n + l , 2 n + l = 0 , (n = 1, 2, • ' ' ) . 
X—>oo 

Accordingly, the series in question is summable (C, 2n + l) to 
the value zero. I t follows a fortiori from formula (16) that 
lima_>a0c«w = 0, (w = l, 2, • • • ). This completes the proof that 
condition (bi) is satisfied for all values of n. 

Let us consider condition (b2). We find from formula (17) 
that 

00 00 00 

(29) 53 C«n = 2 £**(«)**»• 

An interchange in the order of summation in the double series 
(29) gives 

oo oo n 

(30) £ Can = S *n(«) 5 2 Ônfc. 
n=0 n=0 &=0 

This operation is justified by the identity obtained by equating 
the v's to unity in Lemma 1. I t is quite evident from the matrix 
(VP)~l that 5^=o£n/c = 0, (w = l, 2, • • • ), and this can readily 
be proved by complete induction. Moreover, &oo = l. I t follows 
from equation (30) that X ^ o ^ w ^ o O * ) , a n d hence tha t 
lim«->a053^o£cm = 1. Accordingly, condition (b2) has been shown 
to be satisfied. 

Finally, it follows from (27) and the subsequent discussion 
tha t 

00 00 ] 00 1 

5 Z U « n | = Z ^ ^ n . n 52C,X+2n,2nA2n+2<A2X+n(«) , 
n=0 n=0 I X=0 I 

and this expression is clearly uniformly bounded, over £ (a), pro­
vided condition (a3) obtains. Thus, the last of the conditions (b) 
has been shown to be satisfied. This completes the proof of our 
theorem. 
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