SPACE INVOLUTORIAL TRANSFORMATIONS OF THE GEISER AND BERTINI TYPES*

BY L. A. DYE

1. Introduction. One form of generalization of a plane involution is a space involutorial transformation in which each plane of a pencil is invariant and in each such plane there is a plane involution of the same type. Particular examples of this for Geiser and Bertini involutions have been given by Carroll,† Snyder and Lehr,‡ and Sharpe and Dye.§ I shall discuss a more general form for space involutorial transformations arising from these plane involutions by means of a mapping on a cubic surface.|| The Bertini transformation obtained has the signature

$$I_{120n+51}: l^{120n+34+6t} + (O, \bar{O})^{120n+40} + C_{12n+6}^{6};$$

the Geiser transformation has the signature

$$I_{24n+19}: l^{24n+11+3t} + O^{24n+14} + C^{3}_{12n+6}.$$

2. The Geiser Transformation. In an involutorial space transformation of the Geiser type, let $x_4 = \lambda x_3$ be the equation of the invariant pencil of planes, and let I_G be the Geiser involution in the plane $x_4 = \lambda x_3$. Choose one of the fundamental points of I_G as $O \equiv (1, \lambda, 0, 0)$ on the line $l \equiv x_3 = x_4 = 0$, and map the I_G on a cubic surface F_3 by means of the bilinear $T_{3.3}$ defined by the matrices

(1) $||(a_{i1}y_i) (a_{i2}y_i) (a_{i3}y_i) (a_{i4}y_i)||,$

(2) $||(a_{1i}x_i) (a_{2i}x_i) (a_{3i}x_i) (a_{4i}x_i)||,$

* Presented to the Society, December 27, 1934.

† E. T. Carroll, American Journal of Mathematics, vol. 54 (1931), pp. 707–717, and vol. 56 (1934), pp. 96–108.

[‡] V. Snyder and M. Lehr, American Journal of Mathematics, vol. 53 (1931), pp. 186–195.

§ F. R. Sharpe and L. A. Dye, Transactions of this Society, vol. 36 (1934), pp. 292–305.

|| For a discussion of the mapping of a Geiser or a Bertini plane involution on a cubic surface, see H. F. Baker, *Principles of Geometry*, vol. 6, pp. 122-130. where here and in the rest of the paper only the first row of determinants and matrices is written; the second and third rows are obtained by replacing a_{ij} by b_{ij} and c_{ij} , respectively. To the plane $x_4 = \lambda x_3$ corresponds the surface

(3)
$$F_3 = |(a_{i1}y_i) (a_{i2}y_i) (a_{i3}'y_i)| = 0,$$

where $a'_{i3} = a_{i3} + \lambda a_{i4}$. The point *O* goes into the point $P \equiv (D_i)$, where the D_i are the third-order determinants of the matrix $||a'_{11} a'_{21} a'_{31} a'_{41}||$, and where $a'_{i1} = a_{i1} + \lambda a_{i2}$. The image of the line *l* is the cubic curve $C_3 \equiv ||(a_{i1}y_i) (a_{i2}y_i)|| = 0$. The pairs of corresponding points of the Geiser involution J_G on the surface F_3 are determined by the pairs of intersections with F_3 of lines through *P*.

In the J_G on F_3 the image of P is the cubic curve cut from F_3 by the tangent plane p at P. The equation of p is

(4)
$$|(a'_{i1}y_i) (a_{i2}D_i) (a'_{i3}D_i)| = 0.$$

The quadric cone H through C_3 with vertex at P has the equation

(5)
$$|(a'_{i1}y_i) (a_{i2}y_i) (a_{i2}D_i)| = 0,$$

and meets F_3 in a residual cubic which is the image of C_3 . The invariant curve of the J_G is cut from F_3 by the polar quadric of P with respect to F_3 . This quadric K has for its equation

(6)
$$|(a'_{i1}y_i) (a_{i2}D_i) (a'_{i3}y_i)| + |(a'_{i1}y_i) (a_{i2}y_i) (a'_{i3}D_i)| = 0.$$

If a_{ij} , b_{ij} , and c_{ij} are polynomials of order n in λ , and if λ is replaced by x_4/x_3 , then the surfaces $y_i = 0$ in the (x) space are of order 3n+3. These surfaces have l as a 3n-fold line and contain a curve C_{12n+6} of order 12n+6, of genus 24n+3, which meets l in 12n points. Since any plane through l is invariant under the Geiser space transformation, there is a pencil of homaloidal surfaces consisting of the pencil of planes through l and the images of l and O. The equations of these image surfaces are obtained by replacing y_i in the equations of H and p by the thirdorder determinants of the matrix (2). Since H, p, and K are of orders 12n+3, 12n+7, and 12n+4 in λ , respectively, they correspond to surfaces of orders 12n+8, 12n+10, and 12n+10. The table of characteristics of the space involutorial transformation I_{24n+19} can now be written:

$$O \sim F_{12n+10} : l^{12n+7+2t} + O^{12n+9} + C_{12n+6},$$

$$l \sim F_{12n+8} : l^{12n+3+t} + O^{12n+4} + C^{2}_{12n+6},$$

$$C_{12n+6} \sim F_{60n+44} : l^{60n+26+6t} + O^{60n+32} + C^{7}_{12n+6},$$

$$S_{1} \sim S_{24n+19} : l^{24n+11+3t} + O^{24n+14} + C^{3}_{12n+6},$$

$$K_{12n+10} : l^{12n+4+2t} + O^{12n+6} + C^{2}_{12n+6},$$

where the coefficient of t indicates the number of fixed tangent planes at a point of l. The image of the C_{12n+6} is obtained by applying the transformation to an S_{24n+19} .

The parasitic lines of the transformation consist of the trisecants of C_{12n+6} which meet l, and the bisecants of C_{12n+6} which pass through O. The number of trisecants of a C_m which meet a line l having i intersections with C_m is*

$$(m-2)[h-m(m-1)/6] - i(h-m+2) + i(i-1)(i-2)/6,$$

where *h* is the number of apparent double points of C_m . The number of trisecants of C_{12n+6} which meet *l* is 24n+8. In order to obtain the number of bisecants through *O*, it is necessary to set up a correspondence. Given a point μ on the line *l*, there are h' = h - 12n(12n-1)/2 = 36n+7 bisecants through it which determine *h'* planes λ . Given a plane λ through *l* there are six intersections of C_{12n+6} with it not on *l* and hence fifteen bisecants which determine fifteen points μ . In the (λ, μ) correspondence there are h'+15=36n+22 coincidences. There are then 36n+22 bisecants of C_{12n+6} which meet *O*, and the total number of parasitic lines is 60n+30.

Let ζ be the number of parasitic conics of the transformation, and let η be the number of parasitic cubics. The complete intersection of two surfaces of the web of S_{24n+19} is made up of

$$(24n + 19)^2 = 24n + 19 + (24n + 11)^2 + 9 + 9(12n + 6) + 60n + 30 + 8\zeta + 27\eta$$

1935.]

^{*} L. A. Dye, this Bulletin, vol. 41 (1935), pp. 109-110.

curves, and the complete intersection of an S_{24n+19} and the K_{12n+10} is made up of

$$(24n + 19)(12n + 10) = 12n + 10 + (12n + 4)(24n + 11) + 6 + 6(12n + 6) + 60n + 30 + 4\zeta + 9\eta$$

curves. The solution of these equations is $\zeta = 24n + 16$, $\eta = 0$; therefore there are 24n + 16 conics and 60n + 30 lines of the second species in the I_{24n+19} .

3. The Bertini Transformation. The methods of the last section are now used to study an involutorial space transformation of the Bertini type. Let the invariant pencil of planes have the line $l \equiv x_3 = x_4 = 0$ as axis. In a plane $x_4 = \lambda x_3$ let $O \equiv (1, \mu, 0, 0)$ and $\overline{O} \equiv (1, -\mu, 0, 0)$, $(\mu^2 = \lambda)$, be two fundamental points of the Bertini involution I_B in the plane. The I_B is mapped on the cubic surface (3) by means of the T_{3-3} defined by the matrices (1) and (2). The images of O and \overline{O} are $P \equiv (D_i)$ and $\overline{P} \equiv (\overline{D}_i)$; D_i and \overline{D}_i are the third-order determinants of the matrices $||a'_{11} a'_{21} a'_{31} a'_{41}||$, $||\tilde{a}'_{11} \tilde{a}'_{21} \tilde{a}'_{31} \tilde{a}'_{41}||$, where $a'_{i1} = a_{i1} + \mu a_{i2}$ and $\bar{a}_{i1} = a_{i1} - \mu a_{i2}$. The image of l is the C_3 given by the matrix equation $||(a_{i1}y_i)(a_{i2}y_i)|| = 0$.

The tangent planes to F_3 at P, \overline{P} are p, \overline{p} and they have as equations

$$p \equiv \left| (a'_{i1} y_i)(\bar{a}'_{i1} D_i) (a'_{i3} D_i) \right| = 0,$$

$$\bar{p} \equiv \left| (a'_{i1} \bar{D}_i)(\bar{a}'_{i1} y_i)(a'_{i3} \bar{D}_i) \right| = 0.$$

We now define two numbers d, \overline{d} as follows:

$$d \equiv p(\overline{D}_i) \equiv \left| (a'_{i1} \overline{D}_i) (\bar{a}'_{i1} D_i) (a'_{i3} D_i) \right|,$$

$$\overline{d} \equiv \overline{p}(D_i) \equiv \left| (a'_{i1} \overline{D}_i) (\bar{a}'_{i1} D_i) (a'_{i3} \overline{D}_i) \right|.$$

The residual intersection R of the line $P\overline{P}$ with F_3 has as coordinates $(\overline{d}D_i - d\overline{D}_i)$. The equation of the tangent plane to F_3 at R is

$$r \equiv d^{2} \bar{p} + \bar{d}^{2} p - d\bar{d} \{ \left| (a'_{i1} y_{i}) (\bar{a}'_{i1} D_{i}) (a'_{i3} \overline{D}_{i}) \right| \\ + \left| (a'_{i1} \overline{D}_{i}) (\bar{a}'_{i1} y_{i}) (a'_{i3} D_{i}) \right| + \left| (a'_{i1} \overline{D}_{i}) (a'_{i1} D_{i}) (a'_{i3} y_{i}) \right| \} = 0.$$

The pairs of corresponding points in the Bertini involution J_B on F_3 are cut out by the conics tangent to F_3 at P and \overline{P} .

The image of P in J_B is the sextic cut from F_3 by the quadric having contact with F_3 at \overline{P} and contact of the second order at P. Its equation is

$$H \equiv \bar{d}^2 d \left[\left| (a'_{i1}y_i)(\bar{a}'_{i1}D_i)(a'_{i3}y_i) \right| + \left| (a'_{i1}y_i)(\bar{a}'_{i1}y_i)(a'_{i3}D_i) \right| \right] + pr = 0;$$

similarly the quadric which determines the image of \overline{P} has the equation

$$\overline{H} \equiv d^{2}\overline{d} \left[\left| \begin{array}{c} (a'_{i1}\overline{D}_{i}) & (\overline{a}'_{i1} y_{i}) & (a'_{i3} y_{i}) \\ ' & + \left| \begin{array}{c} (a_{i1} y_{i}) & (\overline{a}'_{i1} y_{i}) & (a'_{i3} \overline{D}_{i}) \end{array} \right| \right] + \overline{p}r = 0.$$

The cubic curve C_3 corresponds to a cubic cut from F_3 by the quadric through C_3 and touching F_3 at P and \overline{P} . This quadric has the equation

$$L \equiv \left| (a'_{i1} y_i) (a'_{i1} y_i) A \right| = 0,$$

where A, B, C are the second-order determinants of a two column matrix whose columns are made up of the second-order determinants of the matrix $\|(\bar{a}'_{i1}D_i) (a'_{i3}D_i)\|$ and the matrix $\|(a'_{i1}\overline{D}_i) (a'_{i3}\overline{D}_i)\|$. The web of quadrics which touch F_3 at P and \overline{P} cuts F_3 in a web of sextic curves of genus two which is invariant under J_B . The locus of an additional point of contact with F_3 of quadrics of the web is the invariant nonic of J_B . It lies on the cubic surface K which has the equation

$$p\overline{H} - p\overline{H} = 0.$$

If the a_{ij} , b_{ij} , and c_{ij} are polynomials of order n in λ , the surfaces H, \overline{H} , L, and K are of orders 48n+13, 48n+13, 24n+6, and 36n+9 in λ . When λ is replaced by x_4/x_3 , then as in §2 we can write the table of characteristics of the involutorial space transformation $I_{120n+51}$ as follows:

$$l \sim F_{24n+12} : l^{24n+7+t} + (O, \overline{O})^{24n+8} + C_{12n+6}^{2},$$

$$(O, \overline{O}) \sim F_{96n+38} : l^{96n+26+5t} + (O, \overline{O})^{96n+31} + C_{12n+6}^{4},$$

$$C_{12n+6} \sim F_{264n+112} : l^{264n+76+12t} + (O, \overline{O})^{264n+88} + C_{12n+6}^{13},$$

$$S_{1} \sim S_{120n+51} : l^{120n+34+6t} + (O, \overline{O})^{120n+40} + C_{12n+6}^{6},$$

$$K_{36n+18} : l^{36n+9+3t} + (O, \overline{O})^{36n+12} + C_{12n+6}^{3}.$$

1935.]

The parasitic lines of the transformation are of three types. (a) There are the 24n+8 trisecants of the C_{12n+6} . (b) The bisecants of C_{12n+6} through O or \overline{O} are parasitic. In a plane λ through l there are fifteen bisecants through the six points of C_{12n+6} not on l, which determine fifteen points μ on l. Given a point μ on l there are h' = 36n+7 bisecants of C_{12n+6} through it which determine λ In the (λ, μ) correspondence there are 15+2h', $(2h', \operatorname{since} \mu^2 = \lambda)$, coincidences, or 72n+29 positions of the points O, \overline{O} such that bisecants of C_{12n+6} may be drawn through them. (c) In each of the 12n planes determined by l and the tangents to C_{12n+6} at its 12n intersections with l, the Bertini involution in the plane breaks down, and the line l is shed off. Hence there are 12n parasitic lines consecutive to l in these 12n planes. The total number of parasitic lines is 108n+37.

To determine the number of parasitic conics and cubics we take the complete intersection of two $S_{120n+51}$ and an $S_{120n+51}$ with K_{36n+18} .

$$(120n + 51)^2 = 120n + 51 + (120n + 34)^2 + 36 + 36(12n + 6) + 108n + 73 + 8\zeta + 27\eta,$$

$$(120n + 51)(36n + 18) = 36n + 18 + (36n + 9)(120n + 34) + 18 + 18(12n + 6) + 108n + 37 + 4\zeta + 9\eta.$$

The solution of these equations is $\zeta = 144n + 47$ conics and $\eta = 84n + 27$ cubics. The fundamental curves of the second species of the involutorial transformation $I_{120n+51}$ consist of 108n+37 lines, 144n+47 conics, and 84n+27 cubics.

CORNELL UNIVERSITY

520