ON THE LIMIT OF A SEQUENCE OF POINT SETS

BY HSÜ PAO-LU

A variable point P_n is said to approach the point P as its limit if to an arbitrary positive ϵ there corresponds an m such that

$$\overline{P_nP}<\epsilon, \qquad (n>m).$$

In other words, P is to have the property that every neighborhood of it contains almost all* the points P_n .

In attempting to generalize this definition to a sequence of point sets M_1 , M_2 , \cdots , one is naturally led to begin with a definition of the neighborhood of a set and then write down (Definition A_0) the last sentence of the last paragraph, replacing the letter P by M.

DEFINITION. By the ϵ -neighborhood of a set M is meant the set of all points which have a distance $< \epsilon$ from some point of M. We shall denote it by $(\epsilon)_M$.

DEFINITION A_0 . A point set M is called a limit of the sequence of sets M_1, M_2, \cdots , if every neighborhood of it contains almost all the sets M_i as partial sets.

But the above definition is far from being useful, because the limit would then not be unique. In the first place, if the set M is a limit in the sense of Definition A_0 , and if M has a cluster point C, then the set M-C has also the property of being a limit of the sequence. Secondly every set containing M as a partial set is a fortiori a limit.

The first difficulty is overcome by requiring M to be closed, and the second difficulty is met by adding still another condition (γ) :

DEFINITION A. A set M is said to be the limit of the sequence of sets M_1, M_2, \cdots , if it has the following properties:

(α) M is closed.

^{*} Thereby is meant that at most a finite number of the points P_i can lie outside the neighborhood.

- (β) For an arbitrary $\epsilon > 0$, $(\epsilon)_M \supset M_i^*$ for almost all indices i.
- (γ) For an arbitrary $\epsilon > 0$, $(\epsilon)_{M_i} \supset M$ for almost all indices i.

Observe that in the case of a sequence of points, (α) is fulfilled, (β) and (γ) become equivalent, and the definition reduces to the old one.

The following are immediate consequences of the definition:

- (1) If a sequence of sets has a limit, the limit is unique.
- (2) If a sequence \mathfrak{S} of point sets has the limit M, every partial sequence of \mathfrak{S} has the same limit M.

Further results hereby obtained consist of two fundamental criteria for the existence of a limit, when we restrict the sets of the sequence to lying in the same finite region of space. Given a sequence \mathfrak{S} of sets M_1, M_2, \cdots , an L-point of \mathfrak{S} shall be defined as a point which is the limit of a sequence of points P_1, P_2, \cdots , where each P_i belongs to the set M_i .

THEOREM A. Let

$$\mathfrak{S}$$
: M_1, M_2, \cdots

be a sequence of point sets such that all the M_i 's lie in the same finite region of space. Then \mathfrak{S} has a limit when and only when, whatever partial sequence \mathfrak{S}_1 be selected from \mathfrak{S} , the set of L-points of \mathfrak{S}_1 coincides with the set of L-points of \mathfrak{S} . The limit of M_i is then the set of L-points of \mathfrak{S} .

THEOREM B. A necessary and sufficient condition for the sequence of sets M_i , lying in the same finite region of space, to have a limit is that, to an arbitrary positive ϵ , there corresponds an M_m such that

- (β') $(\epsilon)_{M_m} \supset M_i$ for almost all indices i,
- (γ') $(\epsilon)_{M_i} \supset M_m$ for almost all indices i.

EXAMPLE 1. If each M_i is closed, M_1 is bounded, and $M_i \supset M_{i+1}$ for all i's, then a limit M exists and is equal to the set of points common to all the M_i 's.

EXAMPLE 2. If $M_{i+1} \supset M_i$ and all the M_i 's lie in the same finite region of space, then a limit M exists and is equal to the closed cover \dagger of the set of points which belong to one of the M_i 's.

^{*} Read: "the ϵ -neighborhood of M contains M_i as a partial set."

[†] The closed cover of a set is the sum of the set and its first derived set.

In the case where each M_i is a point, the meaning of Theorem A is obvious, while Theorem B leads directly to the fundamental criterion for the variable point P_n to approach a limit, namely, to an arbitrary $\epsilon > 0$ there corresponds an m such that $\overline{P_n P_{n'}} < \epsilon$, provided that n, n' < m.

But what do these theorems tell us when the set M_i corresponds to a point function?

To be exact, consider a sequence of functions $f_1(P)$, $f_2(P)$, \cdots , defined in the same bounded set N of (n-1)-dimensional space, and converging toward a limiting function f(P), in each point P of N. Moreover, let the functions $f_i(P)$, f(P) be bounded; that is, $|f_i(P)| < G$, |f(P)| < G, where G is the same number for all the functions. To each f_i corresponds then a bounded set M_i , formed of the points $(x_1, x_2, \cdots, x_{n-1}, x_n)$, where $P: (x_1, x_2, \cdots, x_{n-1})$ is a point of N and $x_n = f_i(P)$. Furthermore, all the sets M_i lie in the same finite region of space. Let M be the set corresponding to f as M_i to f_i . The following result is immediate. If f_i is uniformly convergent, M_i has the closed cover of M as its limit. But the converse is not true. For example, let N be the interval (0, 1), and

$$f_i = \begin{cases} \epsilon_i & \text{when } 0 \le x \le \eta_i, \\ 1 - \epsilon_i & \text{when } \eta_i < x \le 1, \end{cases}$$

where $\epsilon_i > 0$, $\eta_i > 0$, $\epsilon_i > \epsilon_{i+1}$, $\eta_i < \eta_{i+1}$, $\lim_{n=\infty} \epsilon_n = 0$, $\lim_{n=\infty} \eta_n = 1/2$. Here f_i converges non-uniformly, while M_i has the closed cover of M as its limit.

Nevertheless it is true that if N is closed and f is continuous, then f_i converges uniformly when M_i approaches M as its limit. Thus under appropriate restrictions Theorem B is equivalent to the condition for uniform convergence, namely, f_i converges uniformly when and only when, to an arbitrary $\epsilon > 0$, there corresponds an m, independent of P, such that

$$|f_n(P) - f_{n'}(P)| < \epsilon, \qquad (m < n, n').$$

Under the same restrictions Theorem A may be translated as follows. The function f_i is uniformly convergent when and only when, for every sequence of points P_1, P_2, \cdots of N with the limit P, the sequence of numbers $f_1(P_1), f_2(P_2), \cdots$ has the limit f(P).

NATIONAL UNIVERSITY OF PEKING, PEIPING, CHINA