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ON THE LIMIT OF A SEQUENCE OF POINT SETS
BY HSU PAO-LU

A variable point P, is said to approach the point P as its

limit if to an arbitrary positive e there corresponds an m such
that

?7:1_)‘<67 (”>m).

In other words, P is to have the property that every neighbor-
hood of it contains almost all* the points P,.

In attempting to generalize this definition to a sequence of
point sets My, M,, - - -, one is naturally led to begin with a
definition of the neighborhood of a set and then write down
(Definition A,) the last sentence of the last paragraph, replacing
the letter P by M.

DEFINITION. By the e-neighborhood of a set M is meant the set
of all points which have a distance <e from some point of M. We
shall denote it by (€) u.

DEFINITION Ay A point set M is called a limit of the sequence
of sets My, Mo, - - -, if every neighborhood of it contains almost all
the sets M ; as partial sets.

But the above definition is far from being useful, because the
limit would then not be unique. In the first place, if the set M
is a limit in the sense of Definition Ay, and if M has a cluster
point C, then the set M — C has also the property of being a limit
of the sequence. Secondly every set containing M as a partial
set is a fortiori a limit.

The first difficulty is overcome by requiring M to be closed,
and the second difficulty is met by adding still another condi-
tion (y):

DEFINITION A. A set M is said to be the limit of the sequence of
sets M1, M, - - -, if it has the following properties:
(@) M s closed.

* Thereby is meant that at most a finite number of the points P; can lie
outside the neighborhood.
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(B) For an arbitrary €>0, (€)u D M;* for almost all indices 1.
(v) For an arbitrary €>0, (€)u; D> M for almost all indices i.

Observe that in the case of a sequence of points, (@) is ful-
filled, (8) and (y) become equivalent, and the definition reduces
to the old one.

The following are immediate consequences of the definition:

(1) If a sequence of sets has-a limit, the limit is unique.

(2) If a sequence & of point sets has the limit M, every par-
tial sequence of & has the same limit M.

Further results hereby obtained consist of two fundamental
criteria for the existence of a limit, when we restrict the sets of
the sequence to lying in the same finite region of space. Given a
sequence & of sets My, M,, - - -, an L-point of & shall be de-
fined as a point which is the limit of a sequence of points
Py, Py, - - -, where each P; belongs to the set M.

THEOREM A. Let
S: My, M, - -

be a sequence of point sets such that all the M,'s lie in the same
finite region of space. Then & has a limit when and only when,
whatever partial sequence &, be selected from &, the set of L-points
of &, coincides with the set of L-points of ©. The limit of M; is
then the set of L-points of ©.

THEOREM B. A necessary and sufficient condition for the se-
quence of sets M, lying in the same finite region of space, to have a
limit is that, to an arbitrary positive €, there corresponds an M,
such that

(B") (€)n,, D M; for almost all indices 1,

v") (€)ar; D M for almost all indices 1.

ExampLE 1. If each M; is closed, M; is bounded, and
M;> My, for all 's, then a limit M exists and is equal to the set
of points common to all the M,’s.

ExaMpLE 2. If M, ;> M;and all the M,’s lie in the same finite
region of space, then a limit M exists and is equal to the closed
covert of the set of points which belong to one of the M;’s.

* Read: “the e-neighborhood of M contains M; as a partial set.”
t The closed cover of a set is the sum of the set and its first derived set.
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In the case where each M, is a point, the meaning of Theorem
A is obvious, while Theorem B leads directly to the funda-
mental criterion for the variable point P, to approach a limit,
namely, to an arbitrary €>0 there corresponds an m such that
P.P, <e, provided that n, n' <m.

But what do these theorems tell us when the set M, corre-
sponds to a point function?

To be exact, consider a sequence of functions fi(P), fa(P),- - -,
defined in the same bounded set N of (z —1)-dimensional space,
and converging toward a limiting function f(P), in each point
P of N. Moreover, let the functions f;(P), f(P) be bounded;
that is, Ifi(P)| <G, |f(P)| <G, where G is the same number for
all the functions. To each f; corresponds then a bounded set M,
formed of the points (x1, %2, - * -, %1, X.), Wwhere P:(x1, %,

-, ¥n—1) is a point of N and x,=f;(P). Furthermore, all the
sets M, lie in the same finite region of space. Let M be the set
corresponding to f as M; to f;. The following result is immediate.
If fi is uniformly convergent, M; has the closed cover of M as its
limit. But the converse is not true. For example, let N be the
interval (0, 1), and

p { e whenO = x < 9,
L=

B 1 —ewhenn, < x =1,

where €,>0, 7;>0, €; > €11, 7i <Nig1, liMyewe, =0, limu—n, =1/2.
Here f; converges non-uniformly, while M; has the closed cover
of M as its limit.

Nevertheless it is true that if N is closed and f is continuous,
then f; converges uniformly when M; approaches M as its limit.
Thus under appropriate restrictions Theorem B is equivalent to
the condition for uniform convergence, namely, f; converges uni-
formly when and only when, to an arbitrary €>0, there corre-
sponds an m, independent of P, such that

| fa(P) — fur(P)| < e, m < n, ).

Under the same restrictions Theorem A may be translated as
follows. The function f; is uniformly convergent when and only
when, for every sequence of points Py, Py, - - - of N with the limit
P, the sequence of numbers f1(P), fo(P2), - - - has the limit f(P).
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