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A NEW PROOF OF MINKOWSKI'S THEOREM ON THE 
PRODUCT OF TWO LINEAR FORMS 

BY R. Q. SEALE 

Remak,* Mordell,f Landau, J and Blichfeldt§ have all proved 
the theorem, first proved by Minkowski|| (1901) : 

If a, j8, 7, 5, £o, rjo are real and aô—/37 = 1, integers x, y always 
exist such that 

i i 1 

| (ax + fiy — £O)(Y# + ày - r)0) \ ^ - . 

This theorem includes as a special case, the classical theorem 
of Tchebychef ^ (1866): 

If a is irrational and b is real, an infinite number of pairs of in­
tegers x, y (y>0) always exist such that \(x — ay — b)\ can be 
made arbitrarily small, and at the same time 

i i 2 

I x — ay — b I < — 
y 

In what follows, by making use of no principles more ad­
vanced than the elementary properties of convergents, I have 
proved three theorems, the first one being the Tchebychef 
theorem stated above. The second is Minkowski's theorem on 
the product of two homogeneous forms, while the third is the 
Minkowski theorem stated above. I feel that, although Tcheby-
chef's theorem is a special case of Minkowski's theorem, its 

* Bachmann, Die Arithmetik der Quadratischen Formen, Zweite Abteilung, 
p. 66; or Remak, Journal für die reine und angewandte Mathematik, vol. 142, 
p. 278. 

t Mordell, Journal of the London Mathematical Society, vol. 3 (1928), 
p. 19. 

i Landau, Journal für die reine und angewandte Mathematik, vol. 165 
(1931), p. 1. 

§ Published in a syllabus which Professor Blichfeldt distributed to a class 
in geometry of numbers at Stanford University, winter and spring quarters, 
1932. 

|| Minkowski, Diophantische Approximationen, pp. 42-45. 
IT Œuvres de Tchebychef, vol. 1, p. 637. 
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proof should be included in this paper because it so completely 
illustrates the simplicity of the methods I have used. 

Professor Blichfeldt, in his proof, shows that if the ratio q/fi 
is irrational, the form | (ax+/3y — £0) | can be made arbitrarily 
small at the same time that Minkowski's theorem is satisfied. 
This is not shown in any of the other proofs I have read, al­
though it follows from the method Minkowski used in his proof. 

THEOREM 1. Integers x, y (y 5*0) always exist such that 
| x — 6y — co | can be made arbitrarily small, and at the same time 

i i * 
(1) \ x — Oy — <a\ < — j — r ; 

4 | y\ 

where d is irrational and œ is not an integer. 

PROOF. We use the following lemmas. 

LEMMA A. If m and n are relatively prime integers, nx — my = N 
has a solution in integers XQ, yo, such that | yo\ ^n/2. 

LEMMA B. If e? = ei = eg = 1, and a ^ l , 6 ^ 1 , c ^ l , at least 
one of the inequalities 

(a) | a(eie3ab — e2c) | ^ 1, 

and 

(b) | (2 - a) [eM2 - a)b + e2c] | ^ 1, 

is true. 

To prove this lemma, assume that 

(c) a(ab + c) > 1. 

This assumption is permissible, since (a) is surely true if (eie$) 
and e2 agree in algebraic sign. 

Then if (b) is false we must have either 

(d) (2 - a)[c - (2 - a)b] > 1, 

or 

(e) (2 - a) [c - (2 - a)b] < - 1. 

From (c) we obtain 1 ^ & > ( 1 — ac)/a2. If, however, we re-
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place b by (1— ac)/a2 in (d), the inequality is certainly not 
weakened. That is, 

r 1 - acl 

(2 - a) [c - (2 - a) ~^~j 
/ a2c — 2 + lac + a — a2c\ 

- < 2 - " ( — ? • — ) 
/ — 2 + 2ac + #\ 

- ( 2 - « > ( — ? — ) =* ' 
is true. But this reduces to 

c[(a- l ) 2 - 1] + 1 + (a- 1 ) 2 < 0, 

which is impossible. Hence, (c) and (d) are not both possible. 
From (c) we obtain 1 ^c> (1 — a2b)/a, and if we replace c by 

the right-hand side of this inequality, (e) is not weakened. That 
is, 

r l - a2b 1 / l - a2b - lab + a2b\ (2 - a) y (2 - <z)&J = (2 - a) (- — j 

/ l - 2a6\ 

- ( 2 - ) ( - — ) < - ' 

is true. But this reduces to 

1 - lab + a2b = 1 + [(1 - a)2 - l]b < 0, 

which is impossible. The lemma is therefore true. 
Now let us define P by means of the equation 

(2^ P = x - By - w, 

then express 0 as a continued fraction, and let m/n be any con­
vergent to 6. If we write 

m eib 
(3) _ _ 0 = 

W W2 

we have b < 1 and ei2 = 1. 
Define iV and k by the equation 

(4) nu = N + k, 
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where N is an integer and \k\ â 1/2. Say that 

(5) * - - . 

Then e£ = 1, and c ̂  1. 
We can now write 

(6) 

nx — my — N ( m 
P = + ( — 

ft \fl 

nx — my — N 

- * ) y -
k 

n 

From (3), (5), and (6), we obtain 

(m \ k e\by, £2£ (7) ö = y ( _ _ ö ) _ _ = _ Z _ 
\n / n n2 in 

By Lemma A, nx — tny — N = 0 has a solution (x0, yo), both 
integers, with \y0\ ^n/2. Since co is not an integer, y o 9^0. Say 
that 

e%an 

(8) yo==~r' 
where 0 < a ^ l , and ei = 1. 

A second solution of nx — rny — N = 0 will be Xi=x0 — e3nt, 
3>i= yo — e3n. Then 

e3n 
(9) }>i = 3>o — ^3^ = (2 — a). 

When x = x0, y = yo, Q = Qoi that is, from (7) and (8), 

k e%an be\ e^c ( m \ 

n 2 n2 2n 
(io) t 

= — (eiezab — e%c). 
2n 

Similarly, for Xi = x0 — ezrn, yi=yo — e3n, we obtain 
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Qx = (yo-e9n)[ 6) = - — - ( 2 - a) — - — 
\n / n 2 n2 in 

a.) 
= [tfi03(2 — a)b + e2c]. 

2n 
Both (10) and (11) can be made arbitrarily small, numerically, 

for large enough n, and therefore | x0 — 6y0 — œ | and | X\ — dyi — co | 
can both be made arbitrarily small for large enough n. 

The corresponding values of 4;yoÇo and kyiQi are 

ezan 1 
(12) 4:y0Q0 = 4 — • (e^ab — e2c) = eza(e\ezab — £2£), 

2 2w 

e3w — 1 r 

, , „ , *yiQi = - 4 — - (2 - a)-— —[eM2 - a)J + e,c] 
(13) 2 2n 

= £3(2 — a) [exez(2 — a)ô + e2c]. 

By Lemma B at least one of (12) and (13) is less than or equal 
1, numerically. But 6 is irrational; hence b in (3) is neither 0 
nor 1. Therefore (a) or (b) of Lemma B must be less than 1, 
and the theorem is completely proved. 

THEOREM 2. There exist two relatively prime integers m, n such 
that 

(14) | (am + fin)(ym + on) \ < 1 , 

if «5—07 = 1. If a/0 is irrational, infinitely many such pairs 
exist and \ am+/3n\ can be made arbitrarily small and at the same 
time I y m + ôn\ can be made arbitrarily large. 

PROOF. We consider two cases. 
CASE 1. a//3 is rational. Then fi/a = — (m/n), where m and n 

are relatively prime integers. Hence 

(15) am + fin = 0, 

and the theorem is true. 
CASE 2. a/f3 is irrational. We write 

/ 0 \ 
(16) (ax + fly) = a ( x H y) = a(x — By), 
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where 6 is irrational. Let m/n be a convergent to 6. Then, from 
(3), 

(17) 

Hence 

(18) 

m b 

n n2 

m — dn = 
eib 

Equation (18) shows that | a m + / 3 ^ | can be made as small as 
we please for large enough n. 

Since f3/a=—6, we obtain 

(19) 
n 

which, solved for m, gives 

(20) 

Therefore 

ym + On = 

m 8 

- + — 
n a 

eib 

n2 

P , e,b 

(21) 

7I « H ) 
\ a # / 

l» + -
w / 

a \ 1 + 
£i#crA 

The right-hand side of (21) can be made arbitrarily large for 
large enough n. If we choose m/n in (17) so that (eibay)/n<0, 
(16), (18), and (21) give 

(22) • a n 
(am + pn) (ym + bn) | < • = 1. 

n a 
Hence, since there are infinitely many convergents to 0, the 
theorem is completely proved. 

THEOREM 3. If £ = ax-\-fiy and rj = yx-\-by are two linear forms, 
and if a8—fiy = l, and if £0 and rjo are any two real numbers, 
integers xi, yi can always be found such that 
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(23) I (ê -£o) ( *? - ï?o) | £ - . 
4 

If a/13 is irrational | (£ —£o)| can be made arbitrarily small at 
the same time that (23) is satisfied. 

PROOF. We write 

(24) £ = ax + Py, rj = yx + ôy, aô — f$y = 1. 

By Theorem 2, two relatively prime integers m, n exist such 
that 

(25) am + fin = X, 7m + ôw = JU , | XJU | < 1. 

Without loss of generality we can assume that ;u>0. Then we 
have 

(26) X/x = ej, 

where ei2 = 1, and 6 < 1 . We define N and & by means of the 
equation 

(27) M £ o - XTJO = i V + * , 

where iV is an integer and | k\ ^ 1 / 2 . Say that 

e2c 
(28) fe = —, 

where e} = 1, and c:g 1. We can now write 

ju£ — \rj = N = (ym + ô^)(a^ + joy) — (am + fin)(yx + ôy) 

= ?£# — w y . 

By Lemma A, nx — my — N has a solution in integers xo, y$. 
Then all solutions of nx — my = N are represented by 

(30) xi — xo — itn, y% = yo — in, 

where i assumes all integral values. Hence, since 

(31) yxi + byi = 7(^0 — im) + d(y0 — in) = (7X0 + ôy0) — ifx, 

it follows that i, an integer, can always be determined so that 

e$aii 
(32) yxi + ôy{ - rj0 = —— > 
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where e3
2 = 1, and a ^ 1. Supposing i so determined and denoting 

aXi-\-(3yi and yxi + ôyi by £i and rji, respectively, we get 

ezajji 
(33) yi - yo = — — 

Substituting £i for £ and 771 for rj in (29), then subtracting (27) 
and using (28) and (33), we obtain 

(34) /*($! - fo) = X771 + N - X770 - N - * = X(i|i - vo) -

Therefore 

X e^a e2c 1 
(35) (£1 - £0) = M - — = — (ei«8aft - w ) . 

lx 2 2\x 2/x 
Similarly, for yj2 = Vi^"eB^y a n d £2 = 1̂ —^X, we get 

#3M 
(36) 772 — *?o = -~ (2 — a), 

and 

1 . n 
(37) £2 - £0 = 1^3(2 - a)b + e2c\. 

e2c 

2 

2/JL 

For the product of (33) and (35) we have 

(38) 4(£i - £o)0?i — i?o) = eza(eiezab — e2c), 

while the result of multiplying (36) and (37) is 

(39) 4(£2 - êo)(*?2 - i?o) = *3(2 - a)[eM2 - a)b + e2c]. 

If a/ft is rational, we see from (26) and the proof of Case 1, 
Theorem 2, that b = 0 in (38); (38) is therefore less than or 
equal to 1, numerically, and therefore (23) is true. If a/ft is ir­
rational, by Lemma B at least one of (38) and (39) is less than 
or equal 1 numerically, while both (35) and (37) can be made 
arbitrarily small. Hence the theorem is completely proved. 
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