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NOTE ON T H E G E O M E T R I C I N T E R P R E T A T I O N OF 
T H E VANISHING OF A CERTAIN PROJECTIVE 

INVARIANT OF TWO CONICS* 

ROBIN ROBINSON 

1. Introduction. The envelope of a line moving so that its pairs 
of intersections with two conies form a harmonic set is a third 
conic ; the eight tangents to the given conies at their four points 
of intersection touch this envelope. The discriminant of this en­
velope is a relative invariant of weight four of the pair of ternary-
quadratic forms defining the given conic, and is the projective 
invariant mentioned in the title. When it vanishes, the envelope 
is degenerate, and the eight tangents mentioned above pass by 
fours through two points, f 

Let the point-equations of the given conies be 

/ ^ d%j%i%j — U j c*"i ƒ — dji) / j 0%j%%0C j — U j 0%j — 0j{. 

Then their line-equations are 

] T AijUiUj = 0 , X ) BijUiUj- = 0 , 

where An is the cofactor of an in the determinant \an\, and 
similarly for Bij. The line-equation of the envelope is then 

22aijUiUj = 0 , 

where an is found by the Aronhold process^ 

E
dAij ^ oBij 

ou = 2-f aki —r— 
ddki dbki 

The condition that the envelope be degenerate is then \<xn\ =0 . 
For want of a better term, we shall say that the two given conies 
are related if the envelope is degenerate. We shall proceed to 
prove a number of properties of related conies. Although most 

* Presented to the Society, December 27, 1934. 
f Salmon, Conic Sections, 1917, pp. 306 ff., 345; Clebsch-Lindemann, 

Vorlesungen iiber Geometrie, 1932, vol. 1, pt. 1, pp. 513, 523. 
| Clebsch-Lindemann, loc. cit., pp. 501, 513. 
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of these properties are more general, we shall limit our discus­
sion to related conies intersecting in four distinct points. 

2. Related Conies. The locus of a point moving so that the 
lines joining it to the four points -4i(l, 0, 0), ^ ( 0 , 1, 0), 
Az(0y 0, 1), -44(1, 1, 1), respectively, have the cross-ratio X is 
the conic 

(1 — X)#i#2 ~ #2#3 + A#3#l = 0. 

Here X represents not only the cross-ratio of the four lines, but 
also of the four points as points of the second order pencil lying 
on the conic. As X varies we obtain a whole pencil of conies, the 
degenerate cases being given by X = 0, 1, oo. Let us determine 
under what conditions two non-degenerate conies of the pencil 
are related. The equation in line-coordinates of the conic C given 
by X is readily found to be 

u? + \2u2
2 + (1 — \)2ui + 2\u\u2 — 2X(1 — \)u2u$ 

+ 2(1 - X)«8«i = 0. 

If these coefficients are now polarized by the Aronhold process 
with respect to the coefficients of a second conic of the pencil, 
C , given by X', the resulting coefficients ai3- are those for the 
envelope, whose equation is thus 

ux
2 + XX'u£ + (1 - X)(l - \')ui + (A + X/)«1«2 

+ [2XX' - (X + V)]«a«s + [2 - (X + \')]u*ui = 0. 

Its discriminant is 

| au\ = 4(X + X')[2 - (X + X')][2XX' - (X + V) ] , 

and the condition that the two given conies be related is 
| au\ = 0, that is, X+X' = 0, or X+X' = 2, or 1/X +1 /X ' = 2. These 
relations can also be written 

V = - X, 1 - V = - (1 - X), 1 - 1/V = - (1 - 1/X). 

Since X, 1 —X, and 1 — 1/X and their reciprocals are the six cross-
ratios of the four base-points in different orders, we may state 
the following theorem. 

THEOREM 1. A necessary and sufficient condition that two non-
degenerate conies with four distinct intersections be related is that 
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the cross-ratio of these four intersections in some order as points 
of one conic be the negative of the corresponding cross-ratio for the 
other conic. 

The proper order of the intersections gives us a pairing of 
what we shall call associated intersections. For example, if 
X' = —X, since X= (A1A2, A3A4), A\ and A2 are associated inter­
sections, as also are A3 and A±. 

If the above three relations are written X' = —X, X/==2 — X, 
X'=X/(2X — 1), the values X= — 1 , 2, 1/2 are each seen to make 
one of the values of X' correspond to a degenerate conic, and 
hence we have the following theorem. 

THEOREM 2. In a pencil of conies with four distinct base-points, 
there are just three non-degenerate conies which are related to a 
given non-degenerate conic, unless the base-points form a harmonic 
set on the given conic, when there are just two non-degenerate re­
lated conies. One of these related conies corresponds to each pairing 
of the f our base-points, except when the two pairs separate one an­
other harmonically. 

Let us now consider the tangents to two distinct non-degen­
erate conies C(X) and C'(X') at a common point, say Aiil, 0, 0). 
They are respectively 

TV (1 - \)x2 + \xz = 0, T{: (1 - X')*2 + X'x3 = 0. 

Solving simultaneously the equations of 7\ and 

C": (1 — X')#l#2 — #2#3 + X'#3#l = 0 , 

we find that they intersect at Ai and 

/ V - X V - X\ 
Si: ( l , > ) . 

\ 1 - X X / 

Similarly, T{ meets C a t l i and 

/ X' - X X' - X\ 

For convenience we shall call Si and SI the satellite points of Ai. 
Now Si and Si are collinear with ^2(0, 1, 0) if and only if 

the determinant of the three sets of coordinates vanishes, that 
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is, if and only if X' = —X, in other words, if and only if C and C' 
are related conies with A\ and A2 associated intersections. 

Similarly, S\ and Si are collinear with ^.3(0, 0, 1) if and only 
if X/ = 2 - X , and with ^ 4 ( 1 , 1, 1) if and only if X '=X/(2X-1) . 

I t is clear from this that if X' = —X, the satellite points of A2 

are collinear with Ai, those of A% with At, and those of At with 
A3. Hence we may state the following theorem. 

THEOREM 3. A necessary and sufficient condition that two non-
degenerate conies with four distinct intersections be related is that 
the satellite points of a point of intersection be collinear with a 
second point of intersection] when this is true, the satellite points 
of each intersection are collinear with the associated intersection. 

It is interesting to note that if the two conies are circles, then 
a necessary and sufficient condition that they be related with 
their finite intersections associated is that they be orthogonal.* 
This property suggests related conies as a natural projective 
generalization of orthogonal circles, which indeed they are. 

That related conies are not a natural generalization of or­
thogonal conies in general is readily illustrated by the case of the 
ellipse bi2x2 -\-ai2y2 — ai2bi2 and the hyperbola b£ x2—a$ y2 = ai b2

2, 
which are orthogonal if and only if confocal. The writer has 
found that they are related with their first and second quadrant 
intersections associated if and only if bi = b2. 

Since in the case of related conies the envelope mentioned in 
the first paragraph is degenerate, the eight tangents Ti, TV, 
0 ' = 1 , 2, 3, 4), to C a n d C' at Ah ( i = l , 2, 3, 4), pass by fours 
through two points. In case X' = — X, 7\, T2, Ti , T( are concur­
rent at the point (1, —X, 1—X), while T3, JH4, T{, T2 are con­
current at (1, X, 1+X). The two sets are perspective in the line 
#1 —#2+tf3 = 0 (and also in another order in the line X\ — x2 — x3 

= 0), and hence have the same cross-ratio. From the equations 

7 \ : (1 - X)#2 + Xx3 = 0, T2: (1 - X)xi - *3 = 0, 

Ti : \xi + x2 = 0, Tl : Xi + \x2 — (1 + X)#3 = 0, 

we see that Ti ~Ti+\T2y Tl ~\Ti + T2, so that the cross-ratio 
isX2. 

* Salmon, loc. cit., pp. 348 ff. 
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THEOREM 4. If two conies are related, the eight tangents to them 
at their four points of intersection are concurrent in two perspec­
tive sets of four each, one of whose common cross-ratios is the 
square of the corresponding cross-ratio of the four corresponding 
intersections regarded as points of one of the conies. 

In case the two conies C and C are related with A\ and A% as 
associated intersections, X / = —X, and the satellite points of A\ 
become 

S l ! ( , , ^ , 2 ) , * : ( 1 , ^ , 2 ) , 

and their join becomes the line x% = 2x\. Since this is independent 
of X, we have the following theorem. 

THEOREM 5. If each non-degenerate conic of a pencil with f our 
distinct base-points is paired with the related conic for which two 
definite base-points are associated intersections, the satellite points 
of one intersection all lie on the same straight line through the other 
intersection. 

3. Related Line Conies. I t is of course desirable to consider the 
dual of two related conies. The locus of a point moving so that 
the four tangents drawn from it to two given conies form a 
harmonic set is a third conic, and the two given conies are re­
lated in the dual sense if this locus is degenerate. Suffice it to 
say that for the conies C and C' this locus has the equation 

(X - X')20i2 + xi + %i) + 2[2 - (X + X')][2Xy- (X + \')]*i*2 

+ 2(X + X')[2 - (X + y)]*8*a 

+ 2(X + \ ' ) [ 2 \ \ ' - (X + X')]*8*i = 0, 

and that its discriminant is 

- 16XX'(1 - X)(l - X')(X + \ ' ) [2 - (X + X0][2XX' - (X + X')]. 

Since neither C nor C' is degenerate, XX'(1 — X)(l — X') T^O, and 
hence this locus is degenerate when and only when C and C' are 
related in the original sense. Hence we have the following theo­
rems. 

THEOREM 6. Relatedness is a self-dual property. 

THEOREM 7. Two non-degenerate conies with four distinct com-
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mon tangents are related if and only if the cross-ratio of these four 
common tangents in some order as lines of one conic is the negative 
of the corresponding cross-ratio for the other conic. 

If the other tangents to C' and C drawn from the points of 
contact of a common tangent with C and C', respectively, be 
termed satellite lines of the common tangent, then we have the 
following theorem. 

THEOREM 8. The satellite lines of a common tangent to two non-
degenerate conies are concurrent with another common tangent if 
and only if the conies are related. 

COROLLARY. The satellite lines of a real common tangent to two 
orthogonal circles are concurrent with the other real common tan­
gent. 

4. Osculating Cubic of Related Conies. In order to study the 
next property of related conies we shall introduce a non-homo­
geneous coordinate system in which A\ is the origin, A\S\ and 
A\S{ the x and y axes, respectively, and SiS{ the line at infinity. 
Since then C is tangent to the x axis at the origin and passes 
through the point at infinity on the y axis, its equation is 

C: x2 — axy — by = 0, or y = x2/(ax + b). 

Similarly, 

C": — cxy + y2 — dx = 0, or x = y2/(cx + d). 

Any cubic having a node at the origin with the axes as nodal 
tangents will have an equation of the form 

Qii axz + fix2y + yxy2 + dyz — bdxy = 0. 

I t is clear that the undetermined coefficients a, /?, y, 5 leave us 
just enough freedom to make Q\ have four-point contact with 
each of C and C' atAi. For example, if <2i and C are to have four-
point contact at Ai, they must intersect five times there (four 
times for one branch of Qi, once for the other). That is, if we 
substitute y = x2/(ax+b) in the left member of the equation of 
Qi, x5 must be a factor of the resulting expression. Substituting 
and multiplying by (ax+b)z, we obtain the equation 

axz(ax + b)z + (3x4(ax + b)2 + yx6(ax + b) 

+ Ôx6 - bdx*(ax + b)2 = 0. 
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Equating to zero the coefficients of xz and xA, we have 

ab* - bzd = 0, a = d, 

3aab2 + pb2 - 2ab2d = 0, p = - ad. 

Performing the same process with Q\ and C", we obtain the re­
lations 7 = — be, 5 = b. Hence the equation of Qi becomes 

dxz — adx2y — bcxy2 + byz —• bdxy = 0. 

This we shall call the osculating cubic of C and C' for the inter­
section A\. Since Qi cuts each of C and C five times at -4i, it 
must have a single intersection with each somewhere else. If 
we multiply the first equation given above for C by dx we obtain 
dxz — adx2y — bdxy = 0. Subtracting from the equation of Qi, we 
have — bcxy2+byz = 0, and so the remaining intersection lies on 
the line y = cx, which also passes through the intersection of C 
with the line at infinity other than Si. In a similar manner, the 
remaining intersection of Ci and C' lies on x = ayf which also 
passes through the intersection of C with the line at infinity 
other than Si . 

Now a necessary and sufficient condition that C and C' be 
related is that these extra intersections with the line at infinity 
be coincident, that is, ac — 1, in which case they also coincide 
with the extra points common to Qi and C, and to Q\ and C' ; 
and conversely. Hence we have the following theorem. 

THEOREM 9. A necessary and sufficient condition that two non-
degenerate conies be related is that the osculating cubic at any inter­
section pass through another intersection, which in this case is the 
associated intersection. 

Curiously enough, it was this property in the case of two or­
thogonal circles which introduced the writer to this problem. 

Returning now to our original coordinate system, and to the 
related conies C and C' for which X'= —X, I remark that it is 
merely a matter of detail which I shall spare the reader to show 
that the equation of the osculating cubic Qi at A i is 

Qll (SXz — 2# i )# 2
2 + X2(#3 + 2ffi)(ff2 — #3)2 = 0 . 

As X changes, the cubic Qi for the pairs of conies C and C' form 
a pencil, with base-points as follows: 
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Quadruple base-point : Ai(l, 0, 0), common node; 
Double base-points: (1, 0, — 2), common tangent #3 + 2xi = 0; 

(3, 2, 2), common tangent 3x3 —2xi = 0; 
Simple base-point: ^2(0, 1,0), associated intersection. 

It is interesting to note that the common tangents at both 
double base-points pass through A2. Moreover, x3 + 2xi = 0 is the 
harmonic conjugate of S\S{ (x3 = 2xi) with respect to the lines 
A \A2 (#3 = 0) and ^2^3 (#i = 0), while 3x3 — 2xx = 0 is the har­
monic conjugate of S\S( (#3 = 2xi) with respect to A1A2 (#3 = 0) 
and A 2A 4 (xz = Xi). 

By applying the involution 

px( = %z — #2, poci = Xz — %i, pxz = #3, 

which interchanges Ai and A2, Az and A±, and leaves C and C 
invariant, Qi is transformed into Ç2, the osculating cubic at A2, 
which also passes through the associated intersection A\\ 

Qz'- (xz + 2#2)(#i — xz)2 + X2(3^3 — 2#2)#i2 = 0. 

Since every point of the line x3 = #i+#2 is invariant under the 
involution, three of the intersections of Q\ and Q2 lie on it. Two 
more are at each of A\ and A2. The only fixed point of the in­
volution not on Xz = X\-\~X2 is the point (1, 1, 0), which lies on 
neither cubic, so the two remaining intersections of Q\ and Ç2 
are interchanged by the involution, and hence lie on a fixed line 
passing through (1, 1, 0). Suffice it to say that if X is real they 
may be shown to be conjugate imaginary. 

Similarly, the cubics Qz and Ç4, osculating cubics at Az and 
Ai, may be obtained. Three of the intersections of <2i or Q2 with 
Qz or Ç4 lie on a line, while the other six lie on a conic. 

Just one more property seems worthy of mention. The points 
Si and Si' on the line #3 = 2#i may be given by the relation 

[(1 - \)x2 + 2\*i][(l + \)x2 - 2X*i] = 0, 

or x2
2— X2(#2 — 2xi)2 = 0. This same line meets Qi at A2 and at 

the points given by #2
2+X2(x2 — 2xi)2 = 0. These two pairs of 

points separate one another harmonically, though the second 
pair is imaginary when X is real. 

DARTMOUTH COLLEGE 


