
I935-] EQUIVALENCE OF MASS AND ENERGY 223 

E L E M E N T A R Y DERIVATION OF T H E EQUIVALENCE 
OF MASS AND ENERGY* 

BY ALBERT EINSTEIN 

The special theory of relativity grew out of the Maxwell 
electromagnetic equations. So it came about that even in the 
derivation of the mechanical concepts and their relations the 
consideration of those of the electromagnetic field has played 
an essential role. The question as to the independence of those 
relations is a natural one because the Lorentz transformation, 
the real basis of the special relativity theory, in itself has nothing 
to do with the Maxwell theory and because we do not know the 
extent to which the energy concepts of the Maxwell theory can 
be maintained in the face of the data of molecular physics. In 
the following considerations, except for the Lorentz transfor­
mation, we will depend only on the assumption of the conserva­
tion principles for impulse and energy. 

We begin by making plausible the expressions for impulse 
and energy of the material particle in the well known way. The 
fundamental invariant of the Lorentz transformation is 

ds* = dt2 - dx2 - dy2 - dz2, 

or 

ds « dt(i - u2yi2, 

where 

/dx\2 /dy\2 /dz\2 

If one divides the components of the contravariant vector 
(dt, dx, dy, dz) by ds, one obtains the vector 

/ 1 Ui u2 uz \ 

VÖT-^2)1/2' (T^^2)^2' (T^2)1 '2 ' (T^^ï/v* 

* The Eleventh Josiah Willard Gibbs Lecture, delivered at Pittsburgh, 
December 28, 1934, under the auspices of this Society, at a joint meeting of 
this Society, the American Physical Society, and Section A of the A.A.A.S. 
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Let (dt, dx, dy, dz) belong to the world-line of a material particle 
of mass m. We obtain a vector connected with the motion of the 
latter by multiplying by m the jour-vector of velocity that we 
have just written down. We thus have 

/ m mui \ 

where the index i runs from 1 to 3. 
Neglecting the third power of the velocity, we can express the 

components of this vector by 

(rja) — (m H mu2, mui). 

The space components of (rj*) express in this approximation the 
components of the impulse in classical mechanics, while the 
time component, aside from the additive constant mf expresses 
the kinetic energy of the material point. 

If one goes back to the exact expression for (77'), it is there­
fore natural to take 

mui 

(1 - u2)^2 

as the impulse and 

/ 1 
m[ 1 

\ ( 1 - u2)1'2 

as the kinetic energy of the particle. However, how is one to 
interpret the time component m/(l —u2)112 itself, the expression 
for which after all is the really significant one? Here it is 
natural to give it directly the meaning of energy, hence to 
ascribe to the mass-point in a state of rest the rest-energy m 
(with the usual time unit, mc2). 

Of course, this derivation cannot pretend to be a proof since 
in no way is it shown that this impulse satisfies the impulse-
principle and this energy the energy-principle if several particles 
of the same kind interact with one another; it may be a priori 
conceivable that in these conservation-principles different ex­
pressions of the velocity are involved. 

Furthermore, it is not perfectly clear as to what is meant in 
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speaking of the rest-energy, as the energy is defined only to 
within an undetermined additive constant; in connection with 
this, however, the following is to be remarked. Every system 
can be looked upon as a material point as long as we consider 
no processes other than changes in its translation velocity as a 
whole. I t has a clear meaning, however, to consider changes in 
the rest-energy in case changes are to be considered other than 
mere changes of translation velocity. The above interpretation 
asserts, then, that in such a transformation of a material point 
its inertial mass changes as the rest-energy; this assertion 
naturally requires a proof. 

What we will now show is the following. If the principles of 
conservation of impulse and energy are to hold for all coordinate 
systems which are connected with one another by the Lorentz 
transformations, then impulse and energy are really given by 
the above expressions and the presumed equivalence of mass 
and rest-energy also exists. 

We start from some simple kinematic consequences of the 
Lorentz transformation : 

t' + vx' x' + vt' 
t = • f x = —•—• > y = y ' z =* z', 

(1 - v2)112 (1 - v2)1'2 

where v is the relative velocity of the coordinate systems K 
and K'. The same relations hold for the differentials dx, etc. 
By suitable division one obtains the law of transformation of 
the velocities : 

U\ 

FYc 

u{ + v 

1 + u( v 

»m this one obtains 

u'* + 2u{v + v2-

t 

up 

Uz 

v2 — 

_ ui (1 -

1 + 

• uPv2 

• 2)2)1/2 

u(v 

uz = 

and 

(1 + u(v)2 

1 l + u{v 
( i - u2)1'2 ( i - uf2yi2(\ - v2)112 

as well as 
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U\ u{ + V 

( T - u ^ "" ( I - ^ / 2 ) 1 / 2 ( l - ZJ 2 ) 1 ' 2 ' 

(i -1**2)1'2 ~ (i - f/2)1 '2 ' (i - ^2)x /2 " ( T " " ^ 2 ) ^ 2 ' 

We introduce now for the following the concept of the 
particle-pair. By this we understand two material points with 
equal and opposite velocities referred to K' (and later to be 
chosen of equal mass). The two particles are designated by 
the indices + or —. Hence u+ =uL, u{+= —u{-, etc. Applying 
to these our transformation equations after addition, we get 

2 

( 1 ~ ^ , 2 ) 1 ' 2 ( 1 - i>2)1/2' 

2v 
(7"Z~'2)l/2(1 _ 2̂)77̂  ' 

(i - ^ +
2 ) 1 / 2 Ji-ujy* ~~ 

The sums on the left sides of these equations depend, therefore, 
only on the velocity u' of the pair referred to the special system 
K' and on the relative velocity v of K' with respect to K, not 
however on the direction in which the particles are moving. 

We remark that the equations (1) can be derived more 
clearly if one considers directly the transformation for the sum 
of the four-vectors of the velocities of a particle-pair. I have 
chosen the above representation, however, because the con­
servation laws indicate the use of this 3-dimensionally inhomo-
geneous manner of writing. 

We now go to the actual considerations. We assume that im­
pulse and energy of a material point are given by expressions of 
the form 

Iv = muyFiu), E = EQ + nG{u), (v = 1, 2, 3), 

where F and G are universal, even functions of the velocity u, 
which vanish for u = 0. Then mG(u) is the kinetic energy, -Eo the 

+ 
1 

(i - **+2)1/2 (i - ujyi* 

« i + 

• + • 

W i _ 

(1) 
(1 - « +

2 ) 1 / 2 (1 - w-2)1 / 2 

H-2+ M2_ 

(i - «+2)1'2 ~(T^ ujyi* 
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rest-energy of the material point, m the rest-mass or, simply, the 
mass. It is here assumed that impulse and energy of the mass-
point are independent of direction of motion and of the orienta­
tion of the mass-point relative to the velocity. I t is further as­
sumed that in impulse and energy the same mass-constant m 
occurs, for which, however, we shall find later a partial justifi­
cation. 

We consider now the elastic eccentric collision between two 
particles of equal mass. One can always choose the coordinate-
system Kf so that, referred to the latter, the velocities of the 
masses before the collision are equal in magnitude and opposite 
in direction ; how are the velocities after the collision constituted 
with reference to K'? If the velocities after the collision were 
not likewise equal and opposite, the impulse law would be vio­
lated. If the common velocity of both masses after the collision 
were not equal in magnitude to that before the collision, in case 
the collision is elastic, the energy law would be violated. This 
holds independently of the particular law of dependence of 
impulse and energy on the velocity. The collision, therefore, 
changes only the direction of motion of the two mass-points re­
ferred to K''. We can express this briefly as follows. A particle-
pair before the collision is transformed by the latter again into 
a particle-pair of the same velocity u'. 

The right side of (1) is therefore not changed by the collision. 
It follows then, from (1), that, referred to K, we have for the 
states before and after the collision the equations: 

1 1 1 1 
+ — TT— = — —— + • (1 - «+*)l/2 (1 - «J) l /2 (1 - fl+2)l/2 (1 _ flJ)l/2 

(i - u^yi* (i - «j)i /« (i - ûj)1'2 (i - ÜJ) 1/2 

Barred quantities are those which refer to the state after the 
collision. These equations, which are valid in general for elastic 
collisions of equal masses, have the form of conservation equa­
tions; it may therefore be taken for granted that no other sym­
metrical or anti-symmetrical functions of the velocity-com­
ponents exist which in the present case of the elastic collision of 
two identically constituted material points give anything 
analogous. Consequently we shall have to regard 
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mui 
(3) 

(i - u*yi* 
as impulse and 

(4) ml 1) 
\ ( 1 - ^ 2 ) 1 / 2 / 

as the kinetic energy of a particle.* 
We now turn to the proof of the assertion that the mass is 

equal to the rest-energy. For the total energy E of a moving par­
ticle we shall have to take 

(4a) E = E0 + ml 1 ) , 
\ ( 1 - */2)1/2 / 

where we imagine that E0 (rest-energy) and m can be changed 
in the case of interactions of material points that are not elastic. 

We now consider the inelastic collision between two particles 
of equal mass and equal rest-energy, which before the collision 
again form a particle-pair with respect to K' (velocities equal 
and opposite). We assume here for simplicity that the internal 
changes which the material points suffer in the collision are 
equal to each other. From the impulse principle referred to K' 
it follows as above that the final velocities of the two particles 
must be equal and opposite (w+ = — ül). The energy law gives 
then, referred to K' and K} respectively, 

2EQ + 2m ( 1 ) = 2Êo + 2fn( 1 ] , 
\ ( 1 - f / 2) 1 ' 2 / \ ( 1 - ^j'2)1 '2 / ' 

2E0 + ml 1 J + ml 1 J 
Va-^ 2 ) 1 ' 2 / V(l-^J)1/2 / 

= 2Êo + ml l j + ml lY 
\ ( i - ^ +

2 ) 1 / 2 / \(i-üjyt* J 

As the points form a pair before and after the collision, one can 
write the last equation on the basis of (1) in the form 

* This must naturally vanish for w = 0 ; for it is defined as the expenditure 
of energy necessary to impart the velocity u to the particle initially at rest 
(without internal change). 
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m 
E0 — m + 

(1 - uf*yi\l - v2)1!2 

m 
= EQ — tn + 

(1 - ü'2yi2(\ - v2)112 

The first equation we write analogously in the form 

m __ m 
(5) Eo - m H — = Eo - w H 

(1 - uf2y>2 (1 - **'2)1/2 

Multiplying the last equation by 1/(1— v2)112 and subtracting 
from the previous one we get 

or 

(6) 

l(£o - Eo) — (m — m)\[ 

£o — -Eo = fn — m. 

The rest-energy changes, therefore, in an inelastic collision 
(additively) like the mass. As the former, from the nature of the 
concept, is determined only to within an additive constant, one 
can stipulate that EQ should vanish together with m. Then we 
have simply 

E0 = tn, 

which states the principle of equivalence of inertial mass and 
rest-energy. 

If we apply the impulse law to the ^-component, it follows 
(for an inelastic collision) that 

m —• • • + m •— = m —— \-m • 
(î - u^Y'2 (i - uiyi2 (i - üjy<2 ( i - ajyrf 

or by the application of the second of equations (1), for the 
state before and after the collision, 

m m 

(î - u2y>2 (i - ü2y2 

The same relation follows also from equations (5) and (6) 
which were obtained from the energy principle. If, from the 
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beginning, we had provided the expression for the impulse with 
a mass-constant different from that of the energy, these con­
siderations would show that the impulse-mass changes in an 
inelastic collision like the energy-mass. This is a partial justi­
fication for setting both mass-constants equal to each other. 

The result of this consideration is therefore as follows. If for 
collisions of material points the conservation laws are to hold 
for an arbitrary (Lorentz) coordinate-system, the well known 
expressions for impulse and energy follow, as well as the validity 
of the principle of equivalence of mass and rest-energy. 

Professor G. D. Birkhoff has called my attention to the fact 
that in the book which he has written in collaboration with 
Professor R. E. Langer, Relativity and Modern Physics, quite 
similar considerations are given concerning collisions of par­
ticles, as well as concerning impulse and energy. In spite of 
this, I believe that the present derivations merit a certain 
amount of interest. 

Thus, in the book just mentioned, essential use is made of 
the concept of force, which in the relativity theory has no such 
direct significance as it has in classical mechanics. This is con­
nected with the fact that, in the latter, the force is to be con­
sidered as a given function of the coordinates of all the particles, 
which is obviously not possible in the relativity theory. There­
fore I have avoided introducing the force concept. 

Furthermore, I was concerned with avoiding making any 
assumption concerning the transformation character of impulse 
and energy with respect to a Lorentz transformation. 

INSTITUTE FOR ADVANCED STUDY 


