$$
R=R_{\mathbf{z}}+R_{\bar{z}}=a_{1,0}+a_{0,1}
$$

In conclusion it should be stated that $R_{\bar{z}}$ is the negative of \bar{R} defined in the article in the Transactions (loc. cit.); this change is also carried over into the definition for the total residue. The reason for this change is partly evident in the results just obtained; then this change of sign brings $R_{\bar{z}}$ into accord with the mean derivative and the circulation theorem (4^{\prime}). Also a slight change in the proof of Theorem 1 for R_{z} will establish the theorem for R_{2}.

The University of Michigan

NOTE ON A MERSENNE NUMBER

BY R. E. POWERS
I have recently determined by the computation of Lucas' series $4,14,194, \cdots{ }^{*}$ that the number $N=2^{241}-1$ is composite, since the 240 th term of the series is congruent to

- 9867783355388807227981360452848693265224897467133466

$$
00991728671619979800(\bmod N)
$$

This term would be zero if N were prime.
The square of each term was obtained by means of a computing machine, D. N. Lehmer's cross-multiplication \dagger being used; and these squares, diminished by 2 , were divided by N by hand, with the aid of a table of the 1000 multiples of N : $N, 2 N, 3 N, \cdots, 1000 N$, the quotients being thus obtained three or more digits at a time, and the computation was checked throughout by the four moduli $9,10^{3}+1,10^{4}+1$, and $10^{7}+1$.

Denver, Colorado

[^0]
[^0]: * This Bulletin, vol. 38 (1932), p. 383.
 \dagger American Mathematical Monthly, vol. 30 (1923), p. 67, and vol. 33 (1926), p. 199.

