$$R = R_z + R_{\bar{z}} = a_{1,0} + a_{0,1}.$$

In conclusion it should be stated that R_z is the negative of \overline{R} defined in the article in the Transactions (loc. cit.); this change is also carried over into the definition for the total residue. The reason for this change is partly evident in the results just obtained; then this change of sign brings R_z into accord with the mean derivative and the circulation theorem (4'). Also a slight change in the proof of Theorem 1 for R_z will establish the theorem for R_z .

THE UNIVERSITY OF MICHIGAN

NOTE ON A MERSENNE NUMBER

BY R. E. POWERS

I have recently determined by the computation of Lucas' series 4, 14, 194, \cdots *that the number $N=2^{241}-1$ is composite, since the 240th term of the series is congruent to

- 98 6778335538 8807227981 3604528486 9326522489 7467133466 0099172867 1619979800 (mod N).

This term would be zero if N were prime.

The square of each term was obtained by means of a computing machine, D. N. Lehmer's cross-multiplication† being used; and these squares, diminished by 2, were divided by N by hand, with the aid of a table of the 1000 multiples of N: N, 2N, 3N, \cdots , 1000N, the quotients being thus obtained three or more digits at a time, and the computation was checked throughout by the four moduli 9, 10^3+1 , 10^4+1 , and 10^7+1 .

DENVER, COLORADO

^{*} This Bulletin, vol. 38 (1932), p. 383.

[†] American Mathematical Monthly, vol. 30 (1923), p. 67, and vol. 33 (1926), p. 199.