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A NEW PROOF OF A THEOREM OF DENJOY, 
YOUNG, AND SAKS* 

BY E. II. HANSON 

In 1915 Denjoyt published the following theorem. 

THEOREM. If f(x) is any continuous function, then, at every 
point x with the possible exception of a set of measure zero, either 
(1) f(x) has a unique finite derivative; or (2) the upper (Dini) de­
rivative on one side is + °° , the lower derivative on the other side is 
— oo, and the other two extreme derivatives are finite and equal] 
or (3) the two upper derivatives are + oo and the two lower deriva­
tives are — oo. 

This result was extended to measurable functions by G. C. 
Young and to unrestricted functions by S. Saks. J The basis for 
the latter proof is the corresponding theorem for monotone func­
tions, that is, every monotone function has a unique finite de­
rivative almost everywhere. § Another proof, as yet unpublished, 
is due to H. Blumberg, who uses a general principle for passing 
from measurable functions to general functions. 

The present paper gives a new proof of this theorem, for the 
general case, in a manner which lays bare the essential sim­
plicity of the necessary reasoning involved. This proof, in­
deed, is a direct remodeling, by means of a few well known de­
vices that may now be regarded as standardized in analysis, of 
the intuitive perception of the theorem which readily suggests 
itself. I t appears, too, that there is no real gain in arguing with 
a special hypothesis such as continuity or measurability. 

* Presented to the Society, December 2, 1933. The author wishes to express 
his appreciation to H. Blumberg for helpful criticism. 
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Mathematics, (Oxford), vol. 4 (1933), pp. 233-239. 

§ Due to H. Lebesgue, Leçons sur VIntégration, 1904, p . 128. 
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It will be sufficient to prove that an arbitrary function f(x) 
has almost everywhere either D+f(x) and D^f(x) finite and equal, or 
D+f(x) = + °° , D-f(x) = - oo . For, since D~f(x) = - Z>_ [ - ƒ (*) ] 
and £>+ƒ(#) = — £)+[ — ƒ(#)], a similar statement must hold for 
D~f(x) and D+f(x) and the theorem follows. 

We shall consider first the set of points at which D+ and D_ 
are not both finite. We begin by showing that the set where 
ƒ}+= -f- oo and D~?£ — oo is of measure zero. Denote this set by 
E. Classifying, we have 

E= £ £ r , 
r 

where Er is the set of points of E at which D„>r, and the sum­
mation is over all rational values of r. Furthermore 

Er = ± E';\ 
n = l 

where Er
{n) is the set of points x of Er at which f(x) —f(x') 

>r{x — x') for all xf between x — l/n and x. It will suffice to 
show that, for every pair (r, w), E / n ) is of measure zero. Let 
(a, b) be any interval of length less than 1/n with right end 
point b in Er

(n) and denote by S the set of points of Er
M interior 

to (a, b). Let k be any number whatsoever and consider the set 
T of all intervals (x, x') interior to (a, b) for which the left end 
point x is in 5 and f(x')—f(x)>k(x'—x). Every point x of S 
is the left end point of an arbitrarily small interval of T. Hence, 
according to the Vitali Covering Theorem,* there exist, for 
every e>0, a finite number of non-overlapping intervals of T, 
say Iv = (x„, #„'), (*> = 1, 2, • • • , p), such that 

v 
\me(S)-Y,rn(Iv)\ <e, 

J>=I 

where me stands for exterior measure and m for measure. Fur­
thermore, if (a, |8) is one of the intervals complementary to the 
/„ with respect to (a, &),/3isapointof E™ and/3 — a<l/n. Hence 
ƒ(/?) -ƒ («) > f ( j8-a) . Therefore 

ƒ(») - /(a) > kitni(h) + r\b-a- Y<m{Iv)\. 
v=l L i;=l J 

* Use is here made of a slight modification of the form in which the Vitali 
Theorem is customarily stated in that the points covered are allowed to be end 
points of the covering intervals. 
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Substituting for22f=1w(/v) its equivalent in terms of tne(S), we 
obtain 

ƒ(*) - ƒ(<*) > k[me(S)+ e'] + r[b- a- me(S) - e'\, 

where | e' | <€. It follows that 

f(b) - f (a) è kme{S) + r [b - a - me{S)}. 

Since this inequality holds for arbitrarily large k, we must have 
me(S) = 0 and hence m(Er

M) = 0. 
We next note that the set of points at which D_ = + oo is 

of measure zero. For, by a theorem of G. C. Young,* except in a 
denumerable set the upper derivative on either side is greater 
than or equal to the lower derivative on the other. Hence, al­
most everywhere in the set of points where £>_ = + oc , we have 
also Z)+= + oo. But the set of points at which Z)+ = + °° and 
D-7* — co is of measure zero. 

Since D+f(x) = —D^f( — x)J the measure of the set of points 
at which either D+~ — oo or simultaneously D_=—oo and 
D+^£ _|_ oo i s a i s o 0f measure zero. Summarizing, we can now 
say that , in the set of points at which either D+ or D_ is either 
+ oo or — oo , we necessarily have D+ = + oo and £L = — oo at 
every point with the possible exception of a set of measure zero. 

There remains to be considered the set of points at which 
both D+ and £>_ are finite. We shall show that, almost every­
where in this set, D+ = D^. By the previously mentioned theo­
rem of G. C. Young, D+^D„ except in a denumerable set. Ac­
cordingly, we now let E denote the set of points at which 
D+>D_, both being finite. Classifying, we have 

ri,r2,rt,r4 

* It is not necessary to refer to this theorem if we wish to use the Vitali 
Theorem again to show that the set of points at which, for example, D_>D+ is 
of measure zero. However, the denumerability of this set can be seen in an 
elementary way as follows. Denote the set of points at which D->D+ by E. 
Then E =£,ntrErin), where E r

( n ) is the set of points x of E such that for every x' 
between x — \/n and x and for every x" between x and x + l / w , we have 

m-fw)^ „ ƒ(«")-/(«) 
— > r > — > 

and where the summation is over all pairs {n, r), n being a positive integer and r 
being rational. Since two points of E r

( n ) are at least at distance 1/n apart , 
E$n), and therefore E, is denumerable. 
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where ETv r2, r3, r4 denotes the set of points where t\ > D+ > r2 > r3 > 
Z>_>r4 and the summation is over all quadruples of rational 
numbers rXy r2, r3, r± such that ri>r2>rz>r4. Moreover, 

j? _ V tf(n) 

• / Z / r 1 , r 2 , r 8 , r 4
 — Z ^ - ^ r , , r 2 , r 8 , r 4 j 

where Er"\2, r3, r4 denotes the set of points x of Ervr2,r9,rA such 
that, for every xf between x — l/n and x, we have f(x) — ƒ(#') 
>r4(x* —x') and, for every #' between x and # + l/w, we have 

f(x')— f(x) <ri(x'~x). I t will suffice to show that m(Er^l2irztn) 
= 0. Let (a, b) be any interval of length less than \/n with end 
points in Er[

n)
r2irrr4 and let S be the set of points of £ri

(^2,r3,r4 

interior to (a, b). We may substitute r2 and r4, respectively, for 
k and f in the inequality obtained above, and thus have 

f(b) - f (a) è r2me(S) + fA[b - a - m,(S)]. 

A similar reasoning gives 

ƒ(*) - f(a) ^ rzme(S) + n[b - a - t».(S)], 

and it results that 

me(S) r\ — r4 

b — a ri — r4 + r2 — f3 

The right hand member of this inequality being a constant less 
than l , i t follows that Er["l3,rt,r4 can have exterior metric density 
1 at no point. Hence m(Er i

(^,r3,r4) =0 . This completes the proof 
of the theorem. 

Although in the proof we have tacitly assumed f(x) to be de­
fined on an interval, the method of proof is independent of this 
assumption and f(x) may be regarded as defined on an arbitrary 
point set. 
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