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A NEW PROOF OF A THEOREM OF DEN]JOY,
YOUNG, AND SAKS*

BY E. H. HANSON
In 1915 DenjoyT published the following theorem.

THEOREM. If f(x) is any continuous function, then, at every
point x with the possible exception of a set of measure zero, either
(1) f(x) has a unique finite derivative; or (2) the upper (Dini) de-
rivative on one side is + © , the lower derivative on the other side is
— o, and the other two extreme derivatives are finite and equal;
or (3) the two upper derivatives are + © and the two lower deriva-
tives are — .

This result was extended to measurable functions by G. C.
Young and to unrestricted functions by S. Saks.} The basis for
the latter proof is the corresponding theorem for monotone func-
tions, that is, every monotone function has a unique finite de-
rivative almost everywhere.§ Another proof, as yet unpublished,
is due to H. Blumberg, who uses a general principle for passing
from measurable functions to general functions.

The present paper gives a new proof of this theorem, for the
general case, in a manner which lays bare the essential sim-
plicity of the necessary reasoning involved. This proof, in-
deed, is a direct remodeling, by means of a few well known de-
vices that may now be regarded as standardized in analysis, of
the intuitive perception of the theorem which readily suggests
itself. It appears, too, that there is no real gain in arguing with
a special hypothesis such as continuity or measurability.

* Presented to the Society, December 2, 1933. The author wishes to express
his appreciation to H. Blumberg for helpful criticism.

t Journal de Mathématiques, (7), vol. 1, pp. 105-240.

1 G. C. Young, Proceedings of the London Mathematical Society, (2),
vol. 15 (1916), pp. 360-384; S. Saks, Fundamenta Mathematicae, vol. 5 (1924),
pp. 98-104. See also S. Banach, Comptes Rendus, vol. 173 (1921), pp. 457-459;
A. S. Besicovitch, Akademiia Nauk, (6), vol. 19 (1925), pp. 97-122 and 527-
540; J. C. Burkill and U. S. Haslam-Jones, Proceedings of the London Mathe-
matical Society, (2), vol. 32 (1931), pp. 346-355, and Quarterly Journal of
Mathematics, (Oxford), vol. 4 (1933), pp. 233-239.

§ Due to H. Lebesgue, Le¢ons sur I' Intégration, 1904, p. 128.
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It will be sufficient to prove that an arbitrary function f(x)
has almost everywhere either D*f(x) and D_f(x) finite and equal, or
Df(x) =+, D_f(x) = — . For, since D—f(x) = —D_[—f(x)]
and D, f(x)=—D*[—f(x)], a similar statement must hold for
D=f(x) and D,f(x) and the theorem follows.

We shall consider first the set of points at which D+ and D_
are not both finite. We begin by showing that the set where
D+= -+ and D_» — » is of measure zero. Denote this set by
E. Classifying, we have

E = ) E,

where E, is the set of points of E at which D_>r, and the sum-
mation is over all rational values of 7. Furthermore
E, =Y E",
n=1

where E,™ is the set of points x of E, at which f(x)—f(x’)
>r(x—«’) for all x’ between x—1/n and x. It will suffice to
show that, for every pair (r, n), E,® is of measure zero. Let
(e, b) be any interval of length less than 1/x# with right end
point b in E,™ and denote by .S the set of points of E,™ interior
to (a, b). Let k be any number whatsoever and consider the set
T of all intervals (x, x’) interior to (a, b) for which the left end
point x is in S and f(x') —f(x) > k(x' —x). Every point x of S
is the left end point of an arbitrarily small interval of 7. Hence,
according to the Vitali Covering Theorem,* there exist, for
every €>0, a finite number of non-overlapping intervals of T,
say I,=(x,, %)), w=1,2, -+, p), such that

[ m(S)=2om (L)

where m, stands for exterior measure and m for measure. Fur-
thermore, if (a, B) is one of the intervals complementary to the
I, with respect to (a, b), 8is a point of Ei") and 8 —a <1/n. Hence
f(B) —f(a) >7(B—a). Therefore

1) = f(@) > k3 m(L) + r[b - im(l»].

v=1

<€,

* Use is here made of a slight modification of the form in which the Vitali
Theorem is customarily stated in that the points covered are allowed to be end
points of the covering intervals.
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Substituting for D_?_,m(I,) its equivalent in terms of 7,(S), we
obtain

) = f(@) > k[m(S)+ €]+ r[b — a — m.(S) — €],
where | ¢’| <e. It follows that
J®) = f(@) Z km(S) + r[b — a — mo(S)].

Since this inequality holds for arbitrarily large k, we must have
m(S) =0 and hence m(E,™) =0.

We next note that the set of points at which D_=+x is
of measure zero. For, by a theorem of G. C. Young,* exceptin a
denumerable set the upper derivative on either side is greater
than or equal to the lower derivative on the other. Hence, al-
most everywhere in the set of points where D_= 4 o, we have
also D+=+4 o, But the set of points at which D+ =+ and
D_z — o is of measure zero.

Since D*f(x) = —D_f(—x), the measure of the set of points
at which either Dt= — o or simultaneously D_= —o and
D+ 4 is also of measure zero. Summarizing, we can now
say that, in the set of points at which either D+ or D_ is either
+ o or — o, we necessarily have D¥=+4o© and D.=—0 at
every point with the possible exception of a set of measure zero.

There remains to be considered the set of points at which
both D+ and D_ are finite. We shall show that, almost every-
where in this set, D*=D_. By the previously mentioned theo-
rem of G. C. Young, D= D_ except in a denumerable set. Ac-
cordingly, we now let E denote the set of points at which
D*>D_, both being finite. Classifying, we have

E = E E"lvrz.rxﬂ‘u

T1:79,T3,7y

* It is not necessary to refer to this theorem if we wish to use the Vitali
Theorem again to show that the set of points at which, for example, D_>D+* is
of measure zero. However, the denumerability of this set can be seen in an
elementary way as follows. Denote the set of points at which D_>D* by E.
Then E=)_,,,E,™, where E,® is the set of points x of Esuch that for every x’
between x —1/% and x and for every x’’ between x and x+1/#, we have

fx) =f(x") flx"") —f(x)
’ >r > 1 ’
x—x x'—x
and where the summation is over all pairs (%, 7), # being a positive integer and r
being rational. Since two points of E,®™ are at least at distance 1/# apart,
E{" , and therefore E, is denumerable.
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where E, , ,, ,, », denotes the set of points where 71 >D+>7,> 13>
D_>r, and the summation is over all quadruples of rational
numbers 7y, g, 73, 4 such that r,>7.>73>7,. Moreover,

0

Erl,rz.rl.n = Z E::L,)r,,r,,r”
n=1

where E,E',‘)rz, . r, denotes the set of points x of E, ,, ., such
that, for every x’ between x—1/x# and x, we have f(x) —f(x")
>r4(x—x") and, for every x’ between x and x+1/%, we have
f(x") —f(x) <ri(x’ —=x). It will suffice to show that m(E,™, .. .)
=0. Let (a, b) be any interval of length less than 1/# with end
points in E,ff%,,amd and let S be the set of points of E,ff'lz,,a,,,
interior to (a, b). We may substitute 7, and 74, respectively, for
k and 7 in the inequality obtained above, and thus have

J®) = f(@) Z ramo(S) + ra[b — ¢ — m(S)].
A similar reasoning gives

1(®) — f(a) S rymo(S) + ri[b — a — m(S)],
and it results that

mo(S) - 71— 74

b—a.—fl—-1’4+1’2—f3

The right hand member of this inequality being a constant less
than 1,it follows that E,f,"),2_,3, r, can have exterior metric density
1 at no point. Hence m(E,l(,"),2, rs. ) =0. This completes the proof
of the theorem.

Although in the proof we have tacitly assumed f(x) to be de-
fined on an interval, the method of proof is independent of this
assumption and f(x) may be regarded as defined on an arbitrary

point set.

Jackson, Onio



