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THE PROBABILITY LAW FOR THE SUM OF #
INDEPENDENT VARIABLES, EACH SUBJECT
TO THE LAW (1/(2k))sech(rx/(2h))*

BY W. D. BATEN

1. Introduction. Let the probability of selecting the chance
real variable x from the interval (x, x+dx) be to within infini-
tesimals of higher order, the quantity (1/(2%)) sech (wx/(2h))dx.
This hyperbolic secant probability or frequency function has
been used by others. Roa considered this function in many de-
tails as a generating function for frequency functions and gave
numerical tables pertaining to it.} Fisher obtained as a special
case a type of this frequency law for the frequency of the
“intraclass” correlation coefficient.} Dodd investigated this
probability function as a particular case when considering
measurements under general laws of errors.§ The author ob-
tained the law for the sum of # independent variables when
each is subject to this hyperbolic law but was not able to express
the sum function without the use of an integral.|

The object of this article is to find the probability function
for the sum ) _i-1%; when each variable x; is subject to the prob-
ability function (1/(2k)) sech (wx;/(2k)), or to find the proba-
bility to within infinitesimals of higher order that

u< D % < u+ du.
tesl
2. Case 1: n Finite. If a general method due to Doddf be
applied to this hyperbolic secant law, the probability law for
the sum of # independent variables is

* Presented to the Society, June 22, 1933.

1 E. Roa, A number of new generating functions with applications to statis-
tics, Thesis, University of Michigan, 1924.

1 R. A. Fisher, On the probable error of a coefficient of correlation deduced from
a small sample, Metron, vol. 1 (1920-21), pp. 3-32.

§ E. L. Dodd, Functions of measurements under general laws of errors, Skan-
dinavisk Aktuarietidskrift, 1922, No. 3, pp. 134-158.

|| W. D. Baten, Frequency laws for the sum of n variables which are subject
to given frequency laws, Metron, vol. 10 (1932), No. 3, pp. 75-91.

T E. L. Dodd, The frequency law of a function of variables with given fre-
quency laws, Annals of Mathematics, (2), vol. 27 (1925-26), p. 13.
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pa(u) = 2np~ 11 f w(e“ + e==)~" cos (ux/h)dx.
0

The remainder of this section will be devoted to evaluating
this definite integral for even and odd values of #. In order to
make this evaluation clearer for any value of # let us first con-
sider the case when # is equal to 4. The sum function is

p(u) = 24p~ 151 f °t’(e” + e=)~1 cos (ux/h)dx,
0

which can be found by integrating Fy(z) =e™/k(e*+e%)~*
around the contour C consisting of the following lines:

(a) the x-axis from — R to +R, where R is large,

(b) the lines 2=+ R-+y1,

(c) the line z=mi+}x.

The only pole within the contour C is (wi/2). By Cauchy’s
residue theorem, we have

1
._.._:_f (6' + 3-:)—4eiuz/hdz
2wt C

1 — e—ﬂu/h R
= f (61 + e—x)—4eiuzlhdx

27!"1: —R

1 0
+ f (e..R.H,.' + 8R—yi)—4eiu(—R+yi)/hidy
2w J s

1
2w
= the residue at (71/2),

_|_

i
f (eR-H/i _I_ e—R—-yi)—'leiu (R+ﬂi)/hidy
0

since the integral of F4(3) exists for & and u real quantities. The
last two integrals approach zero as R becomes infinite, for
lim Fy(+ R + yi) = 0.
R—w
The residue at s=m%/2 is also the coefficient of z~! in the

Laurent expansion of Fy(z) around this point. Let z2=m%/24w;
then the residue of Fy(z) at mi/2 is the residue of Fi(wi/2+w)
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at w=0. The function Fi(wi/24w) in the neighborhood of w=0
may be written in the form

e—Tul(2h)

(2w)*

2w 4
g4(w) = (7 ——w>’
e’ — €

and, by definition, g4(0) =1/2. The function gi(w) is analytic
and can be expanded in a Maclaurin series in the neighborhood
of the origin, hence

ga(w) = g4(0) + g{ (O)w + g’ (0)w?/2 + g (0)w?/3! + gu(w),

where ¢4(w) is the remainder after the fourth term in the Mac-
laurin series representing g4(w). To find the coefficient of w1
it is necessary to find the values of the first, second, and third
derivatives of gs(w) at the point w=0. Newsom* obtained the
following formula which will be used to find these derivatives

eiwolh. g (w),

where

at w=0:
oG L - TS
dw" \sin w w=0 B dw" \ew — ¢~ w=0
(2)
> oay
= ———
k—lCr

in which % is any given positive integer =2, 1<r=<k—1, and
where D ouas - - - o denotes the sum of the (*;') products of #
factors each formed by taking the possible combinations of the
(k—1) quantities + (k—2)¢, +(k—4)s, - - -, {%’}, r at a time;

1 having the usual interpretation, 1= (—1)!/?, and where {ioi} is

understood as +17 or 0 according as & is odd or even.
Substituting w=1v/7 in (2), we may write

) L -HEER LG
dur \sin w/ Jy—o B dy" \e¥ — ¢~ v=0 \ 1 ’

* C. V. Newsom, On the derivatives of (w/sin w)* at w=0, American
Mathematical Monthly, vol. 38 (1931), pp. 500-504.
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from which the first three derivatives of gi(w) at w=0 can be
found. Using these values, we find
ga(w) = [1 — 4w?/6 + qu(w)];

hence

h 2h?

Tudw? 4?2
"—3!7;;4- ce )[1 ~ 75 +q4(w):|,

and hence the coefficient of w1 is found to be

¢~ mul(3h) Uw 0292
Fu(ri/2 + ) = ( +

2292

—_ ie—ru/(%)

BT B R

By using this residue and by allowing R to become infinite in
(1), we find that the probability law for the sum of four va-
riables is

u-csch (wu/(2k)) ) \
pu(u) = S ).

The probability function
pan(n) = 2”"h“7r‘1f (e 4+ e2)~%" cos (ux/h)dx
0

may be obtained in a similar way. To obtain this, it is necessary
to find the coefficient of w1 in the Laurent expansion of

an(ﬂ"l:/z + 'lU) =

g—wu/(Zh)eiuw/h [ 2n—1 "

wr
| & OS]

r=:0

where

2w 2n
gz"(w) =\ I
v — ¢

and gg,) (0) is the rth derivative of gs.(w) at 0, and gs.(w) is the
remainder after the 2nth term in the Maclaurin series repre-
senting gz.(w) in the neighborhood of w=0. According to New-
som’s Theorem, we have
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Fan(ri/2 + ) e~/ aw [ iuw  (iuw)?
(i w) =
i 2 n 2l

nw2ni2n

+ . (iuw)‘*’”“l “+ .. ]

T an — Dt
[1 n Zaﬂz._w_’ n Za1a2a3a4 .z“
2n—1C2 2 z,HC4 4!
Zmaz T - Lo ]
+ ot : + gunlw
2n—1Con—2 (2" - 2)' th ( ) ’

from which the coefficient of w—! is found to be

—_ ,iue—ru/(%) 72n

h3n—1227 (2 — 1)!

[u’”“’ + h? Zalagug”“‘ + At Za,agaaamz”“‘

“+ .. 4 p2n2 Zalagas e azn—z]-

The quantity in brackets is a polynomial in #? whose roots are
equal to —(2rh)?, where r=1, 2, - - -, n—1. From this residue
the probability function for the sum « = #*x; is found to be

u-csch (umr/(2h)) n=L . ]
n = 2rh)? |.
) = — D g[“ + k)
In a similar manner it can be shown that

n—1
sech (ru/210) 7y [u’ + @+ 1)%2].

2- B2 H(2m) | g

3. Case 11: n Infinite. By Liapounoff’s theorem* the prob-
ability that

ponpr(u) =

4h(2B,)Y? < u < t2(2B,)'/?

ty
s [ et
¢

1

approaches

* Liapounoff, Sur une proposition de la théorie des probabilités, Bulletin
de L’Académie de St. Petersbourg, (5), vol, 13 (1900), pp. 358-386.



1934.] A PROBABILITY LAW 289

uniformly, where B, is # times the second moment about the

mean of the frequency distribution of the individual variable x,

and t and & are any real numbers. The probability that
h(2B)1? < u < t2(2B,)4?

is

t5(2Bn)1/2
f pa(n)du,
t

(2B, Y2

and hence this expression approaches uniformly

g
iy
14

1

as » approaches infinity, or

‘2(237;)1/2

lim Pu(u)du = ,,.—mf

n=e W 4,(2B,)1/2 ts

ty
et dt,

or

ta
lim (2B.)113p,[(2B,) Y 2u]du

7 —>0 I

ty ty
= lim 2/n'? W2kt 20 du = 72 et dt,
?
t t

n—>cw 1 1

since (2B,)Y2=2hn'2, Since the hyperbolic secant law,
(1/(2k)) sech (wx/(2k)), is of bounded variation and the third
moment of the absolute values of the chance variable x is finite,
this function, or law, satisfies conditions mentioned by Cramér ;*
hence, according to Cramér’s theorem,

2k, (2hnMu) — 7112g=v"

On page 290 are plotted 2k 6Y2ps(2h 6'/24) and w—1/2e~v",

* Cramér, H., On the composition of elementary errors, first paper; Mathe-
matical deductions, Skandinavisk Aktuarietidskrift, 1928, Nos. 1-2, p. 63.
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4. By-Products. The function
(2B2n)V%pan[(2B2n) /3 0]

2 h 1/2 n—1
_ 2nucsch (n’ru) T 14t + (207°].
(2% - 1)1 re=l

©)

Let n» become very large and then substitute zero for % in (3).
This should give a value near the value of 7=12.¢~%* at 4 =0;
hence

\ @B V2py(1/ 3By - )

0
2%n(pl)? 1 22n(p )2
—_—_— or ———
(2n) In' 2w g2 (2n) (rm)12
Dividing both numerator and denominatorby (2-4:6- - - - -2n)
and squaring, we find
224466 - -+ -2n—22n—22n =
—_ —
3-3.5:5:77- - -« (2n— 1)(2n — 1) 2

which is a form similar to Wallace's formula.
When 7 is odd, a similar expression can be found which leads

to this formula of Wallace.
If in pon(%) and pani1(u), u be allowed to be zero, the following

definite integrals are evaluated:

© 1 n—1
fo (e"t 4 e mt)~% cos (ut)dt = P (2n = D)1 g (2rh)3
[(» — 1]
T 4n - DR

{2+ 1)/2] 1
[(n + 1)7l/2h 22n+1

f (et 4 ett)~2n—1 cos (ut)dt =

0
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