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A CYCLIC INVOLUTION OF ORDER SEVEN 

BY W. R. HUTCHERSON 

1. Introduction. In an earlier paper,f the writer discussed a 
cubic surface in ordinary three way space containing an involu­
tion of order five, I5. This paper concerns itself with a different 
cubic surface which contains a cyclic involution, 77. 

2. Discussion of Ii Belonging to P3 in 53. Consider the surface 

^3(^1,^2,^3,^4) = ax£ %z + bx£ %i + cx\XiX\ = 0 

in 53, invariant under the cyclic collineation T of order seven 

Xi :x{ \Xz : xl = X\\€X^\êxz\êx^ (e7 = 1). 

There are four invariant points, P i = ( l , 0 , 0 , 0), P2EEE(0, 1, 0, 0), 
P 3 = ( 0 , 0, 1, 0), and P 4 = ( 0 , 0, 0, 1). Each lies on the surface 
P, and since these are the only possible invariant points, the 
surface P has only four points of coincidence. I t will be noticed, 
however, that only P 2 and P 3 are simple points of P. Hence this 
paper will not be interested in the two double invariant points, 
P x and P 4 . 

Consider a curve C, not transformed into itself by P, and pas­
sing through P2 . Take the plane x3+X#4 = 0 of the pencil passing 
through P 2 and Pi , tangent to C. This plane is transformed into 

P28 and its equivalent P6 are regarded as part of the "formai" theory; but 
both may be omitted, if preferred, without prejudice to the other postulates.) 

What is perhaps the most obvious example of a "formal Principia system 
with equality" is the system (K, C, -f-, ', = ) obtained from Example 0.4 by 
changing the word "correct" to "truistic." The resulting example satisfies all 
the Postulates P1-P6, P8-P11 , but fails on P7 (since there are verdicts a such 
that neither a nor a ' is a "truistic" verdict). 

Thus the distinction between an "informal Principia system with equality" 
and a "formal Principia system with equality" depends on the inclusion or re­
jection of Postulate P7. 

I t is important to observe, however, tha t another, equally good, example 
of a "formal Principia system with equality" is the system obtained from Ex­
ample 0.5 by changing the word "incorrect" to "absurd." The mathematical 
postulates by themselves give no precedence to the "truistic-or" interpretation 
over the "absurd-and" interpretation. 

t W. R. Hutcherson, Maps of certain cyclic involutions on two-dimensional 
carriers, this Bulletin, vol. 37 (1931), pp. 759-765. 
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x 3 + eXx4 = 0 by T and hence is non-invariant. The curve cut out 
on F by X3+XX4 = 0 is therefore non-invariant. The common tan­
gent to the two curves is not transformed into itself. Hence the 
two curves do not touch each other at P2 . Since C was a variable 
curve through P 2 satisfying the non-invariant property, it 
follows that P 2 is a non-perfect coincidence point. A similar 
argument shows that Pi , P3, and P4 are also non-perfect coin­
cidence points. The following theorem has been proved. 

THEOREM 1. The Ii belonging to P3 in Sz has four non-perfect 
points of coincidence. 

Consider the complete system of curves | A | cut out on F by 
all surfaces of order seven. Its dimension is 84, its genus is 64, 
and the number of variable intersections of two members of the 
system is 147. A curve A of this system is not in general trans­
formed into itself by T. There are, however, seven partial 
systems \Ai\ in \A\ which are transformed into themselves. By 
use of |^4i| we find 

#i#i7 + #2#27 + 03X31 + dixj + a$xfx2Xf + a&XiA xi Xi 

+ a7x? xi X3X4 + a8x? x2x£ + a9x}x3x^ + #io#i2#24#4 

+ anxi xi xi + ai2xix2xi xi + anxixi x4
4 + duXixê x$ 

+ ai$xiX2hxz + ai6£2#35^i + ^nxixixi + a^xi xzx£ = 0. 

We refer the curves A\ projectively to the hyperplanes of a lin­
ear space of seventeen dimensions. We obtain a surface </>, of 
order 21, with hyperplane sections of genus 10, as the image of 
IT. The equations of the transformation for mapping h upon 4> 
in Su are 

pXi = xi7 , 

pX2 = x2\ 

pX3 = x3
7, 

pX 4 = X47, 

pX$ = Xi*x2x£, 

pXQ = Xi4xiXi, 

pXi = x^xixzx^ 

pXs = xfx2x£, 

pXQ = xi2x3x4
4 , 

pXio = Xi2X2
4^4, 

p i n = x?x£xi, 

pXu = x±x2xixi, 

pXiz = ffiffl^4, 

p Z i 4 = # i # 3 4 # ? , 

pXi6 = ^lX2
6X3, 

pXie = X2XZ
hX^ 

pX17 = xix$x£, 

pXn = x$Xzx£. 

By eliminating p, xlf x2} x3, x4 from these eighteen equations and 
from Fz(xix2XzXi) = 0 , we get as the fifteen equations defining 
the surface : 
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Xi .A 5 X$ X? XQ 

XÖ Xu Xn Xis Xi2 

Xz Xi± Xn Àri6 

X i 4 XQ X13 X12 

= 0, 

= 0, 
X4 Xn X12 

XQ XI X$ 

X2 -ST 10 X n Xi8 -X"i5 

JLIO -X5 -^6 XQ X7 

^ 1 8 - ^ 1 2 
= 0, 

Xn Xu 

= 0, 

= 0 , 

and aXi7 + bXu-\-cXi2 = 0. Designate by Pi the branch point of 
<fi corresponding to the point P 2 on F. The coordinates of Pi are 
all zero except X2. 

The curves A\ on F pass through P 2 if #2 = 0. The tangent 
plane at P 2 to F is x3 = 0. Now, the system of seventh-degree 
surfaces passing through P2 cuts x3 = 0 in the curves x3 = 0, and 

diXi7 + a4X4
7 + tf5£i4£2#42 + a10Xi X2

iX4 + ai3^iX2
2X4

4 = 0 . 

For general values of the constants this is a seventh-degree 
curve with a triple point at P2 , two branches being tangent to 
the line xi = x3 = 0 and one to the line x3 = X4 = 0. When #5 = aio 
= ai3 = 0, the plane seventh-degree curve breaks up into seven 
lines through P2 . These are all distinct except when either ai = 0 
or #4 = 0, when they coincide with x 3 =x 4 = 0 or Xi = x3 = 0, re­
spectively. Since P 2 is non-perfect, the \Ai\ through P 2 must 
have seven distinct branches unless each branch touches one 
of the two invariant directions. In the plane x3 = 0, the involu­
tion J7 is generated by the homography 77, which is 

x{\x2\x( — Xi:ex2'e
sX4. 

By use of the plane quadratic transformation X: yx'.yi'.yt 
= wiWt:w£ :wiiv2 and its inverse X~l\ W\\w2\W4 = y£' :y2y±:y\y2 

as well as the transformation Y: y\\y2\y4 — w2W4\w2^ \W\W± and 
its inverse Y~l : w\ : w2 : w^ — y2y\ ' y\y<i * 3>i2, we can investigate the 
character of the adjacent invariant points along the two invar­
iant directions at P2 . By the application of XT2X"l = Ti, 

(w1}w2,wA) ^ (;y4
2, 3 ^ 4 , ^ 2 ) £ (e*yi, eAy2yh ey^), 

or 

{ehy?, e*y2y4, yxy2) £ (ehwu esw2, wA). 

Thus the new transformation 77 is x( \xi :xi =e.hXi\ezx2\X4L. 
The invariant point adjacent to P 2 along the line xi = #3 = 0 is 
still a non-perfect coincidence point. Using on the next point 



146 W. R. HUTCHERSON [February, 

YT{ Y-l = T£', we find (wu w2, Wi)J&(wi, ebw2, w4). This point 
is a perfect point of coincidence. This means that T{' is 
x{ \x2 :x{ = Xi:ebx2:x4i and hence it is the collineation represent­
ing a perfect point for (0, 1,0). Thus, by XT2X~l and YT2

f Y~\ 
one finds a perfect point along Xi = x3 = 0 in the neighborhood 
of the second order of P2. Therefore the following is true. 

THEOREM 2. Along the invariant direction tfi = x3 = 0, the in­
variant point P2 has an imperfect point in the first-order neighbor­
hood and a perfect one in the second-order neighborhood. 

Next, investigate the characteristics of the adjacent point to 
P 2 along the invariant direction x3 = x4 = 0. By use of YT2Y^ 
= r2

(/) we get 

(Wi, W2) Wt) ^ (x2Xi, XiX2, Xi2) ^ (€ 4 X 2 #4 , eXXX2) X? ) 

^ (e*wu ew2) w4). 

Hence TV0 is x[ \x2 \x[ = e4Xi : ex2 : x4 and this indicates an im­
perfect point adjacent to P 2 along x3=x4 = 0. Apply Y T2 Y~l 

= r2
( / / ) and find (wu w2, wù~(wu e4<w2, w4). Since TV"* becomes 

x{ :x2 :x( =xi:e4 x2:xt, we are assured of a perfect point in the 
second-order neighborhood of P2 along this invariant direction. 
Hence the theorem follows. 

THEOREM 3. Along the invariant direction x4 = x3==0, the in­
variant imperfect point P2 has an imperfect point in the first-order 
neighborhood and a perfect one in the second-order neighborhood. 

The following theorem is now self-evident. 
THEOREM 4. The imperfect point P2 on P3 has no perfect points 

in the neighborhood of the first order but precisely two perfect ones 
in the neighborhood of the second order. 

The tangent plane to F at P 3 = (0, 0, 1, 0) is Xi = 0. The homog-
raphy P3 in Xi = 0 is x{ \x{ \x( =x2: ex3: e

2x4. To investigate 
the adjacent points to P 3 along the two invariant directions 
xi = x2 = 0 and xi = x4 = 0, one needs the following two quad­
ratic transformations and their inverses : 

Yi\ y2:yz'.y± = w3w4: wi :w2wh 

Yrl: w2\wz\Wi^ yzyi.y2yz\y^ 

Xx: ^ 2 * ^ 3 * ^ 4 = w2Wilw£ :w2W3, 

Xf1: w2:w3:wi = yi:y3yi:y2y3. 
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Apply XiTsXi'1 = T( along xi = x4 = 0 adjacent to P3 . Then we 
have 

(w2, w3, Wi)x^ (yi,ysy±, y2y3) £ (e2y?, esyzy^ ey2yz) 

^ (ew2, e
2wh Wi). 

Since TV is x2 -Xz \x( = ex2\e
lxz'.Xiy we have an imperfect point. 

By using YxTi Yrl = Tj', we get 

(w2y Wz, wA)T^ (e2w2, e*Wz> e2w4). 

Hence we have a perfect point. 
THEOREM 5. Along the invariant direction xi = x2 = 0, the in­

variant imperfect point P 3 has an imperfect adjacent point and a 
perfect one in the neighborhood of the second order. 

Now consider the possibilities along xi = x4 = 0, the other in­
variant direction. Apply F i I ^ F i - ^ P3

(/)and get 

(w2, Wz, Wi) ~ (ezw2y ewz, WA) , 

which signifies an imperfect point. Applying Y\Tz{,) F i _ 1 = T^"\ 
we get (w2, wz, w±)~(w2, e3Wz, e5^4), another imperfect point. By 
use of XiTz{f,) Xi~l = r3

( / / / ) , we get (w2, wS} W4)~(e3w2} ewz, €3w4), 
which indicates that Tz("f) is x2 '.Xz :x{ = e2x2:xz\e2x^ Hence we 
have found a perfect point, and the theorem follows. 

THEOREM 6. Along the invariant direction #i = x4 = 0, the in­
variant imperfect point P 3 has no perfect points in the first- and 
second-order neighborhoods but does have one in the third-order 
neighborhood. 

3. Sections by Sextics. Consider the complete system of curves 
| B | cut out on F by all surfaces of order six. Its dimension is 63, 
its genus is 46, and the number of variable intersections of two 
members of the system is 108. A curve B of this system is not 
in general transformed into itself. There are, however, seven 
partial systems \Bi\ in \B\ which are transformed into them­
selves. By use of | Bi\ we find 

biXixf + b2x2Xzxé + bzx£ x£ + b$xf x2 x£ + b*>x£ Xzx£ + b^x^Xi 

+ biXiX$ Xzx± + b8x? x2xi xA + bdx? x3
4 + bioXixi Xz* 

+ bnx£xi + bi2Xi*x2 = 0. 

If we refer the curves B\ projectively to the hyperplanes of a 
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linear space of eleven dimensions, we obtain a surface 0. The 
equations of transformation for mapping 77 upon 0 in Su are 

pX\ = Xi#45, 

pX2 = x2x3xé, 

pX3 = x$x£, 

pX 4 = x?x£xi, 

pX5 = xfxzx?, 

pX& = # 2
5 x 4 . 

pX-j = XiJ2
3X3X4, 

pXs = Xi x2xi X4, 

pX9 = xfxf, 

p Z i o = XiX2
2X3

3, 

p X n = tf2
4X3

2, 

pXi2 = Xi5X2. 

Xx 

x2 

x7 
X8 

X* 

x7 

- ^ 1 0 

x , 

x7 
Xu 

xe 

x7 

= 0, 

= 0, 

X, 

Xs 

xb 
1 Xn 

X, 

^ 1 0 

x2 
X, 

x6 
Xu 

x3 

Xs 

By eliminating p, Xi, x2, x3, x4 from these twelve equations and 
from Fs(xi,X2,Xs,Xi) = 0, we get as the nine equations defining 
the surface 

X A X1 \\ II X A X r A « 11 

= 0, 

= 0, 

and aX7 + bXs + cXA = 0. 
All the curves B\ pass through the invariant points Pi, P2 , 

P3 , P4. Consider point P2 . Its tangent plane is x3 = 0. It cuts 
the sextic surfaces in the curves 

Xz = 0, bxXixf + b±x? x£ X42 + Z?6̂ 25 4̂ + bi2xx
bx2 = 0. 

This curve passes simply through P 2 along the invariant direc­
tion x3 = x4 = 0. If &6 = 0, the curve degenerates into a line and a 
quintic with a triple point formed by a simple branch passing 
through a cusp. The line is the simple tangent at the triple point, 
while the cuspidal tangent cuts the curve again at an undula­
tion. If i6 = &4 = 0, the curve degenerates into a quintic with a 
five-fold point (having five coincident tangents) and a line, the 
tangent at the five-fold point. If be = bA = bi2 = Q, P 2 is a six-fold 
point. The curve breaks up into six lines, one of which is X\ = Xz 
= 0, while the other five are x3 = x4 = 0 counted five times. Thus 
the system of Bi curves passes through P 2 along invariant 
directions. 

The tangent plane at P 3 is xi = 0. It cuts the sextic surfaces 
in the curves #i = 0, b2x2x3XA4 + bzXzsx^ + bQX25x4i+biiX2

AXz2 = 0. P3 is 
a special triple point on these curves having three coincident 
tangents. The curves touch at P 3 along the invariant direction 
^i = ^4 = 0. If &3 = 0, then the curve passes through P 3 four times 
and is tangent to Xi = x2 = 0 four times. When bs = bn = 0, the 
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curve is five fold at P3 , passing through along the invariant 
direction Xi = x2 = 0 once and along = 0 four times. When 
3̂ = 1̂1 = 2̂ = 0, the curve breaks up into six lines through P3 , 

namely, #i = X4 = 0 counted simply and Xi = x2 = 0 counted five 
times. The following theorem may be stated. 

THEOREM 7. The \B\\ curves pass through the imperfect points 
only along the invariant directions. 

4. Sections by Quintics. The complete system of curves | C\ 
cut out on F by all surfaces of order five has dimension 45, 
genus 31, and the number of variable intersections of two mem­
bers of the system is 75. There are seven partial systems | C,-| 
in \C\ which are transformed into themselves. By the use of 
| C\ | we find 

c\%l%£ + c2X\X2XzX% + czx$ x£ + CiXixi xA + c*>x$ xi x\ 

+ c%x2x£ + C7XiAXs + c%xi xi = 0. 

By referring the curves C\ projectively to the hyperplanes of a 
linear space of seven dimensions, we obtain a surface <ƒ>. The 
equations of transformation for mapping I-j upon <j> in 57 are 

pXi = Xi2x£, pX3 = x£x£, pX5 = x2x$x^ pX7 = #i4#3, 

pX2 = XiX2x3xi, pX4 = Xixixé, pXQ = x2x£, pXs = x} xi . 

Eliminate p, from these eight equations and from 
Fz(xi, x2, Xsj XA) =0 . The five equations defining the surface cf> are 

= o, 
-^3 Xn 

\ X$ XQ 1 
= 0, 

X2 Xi 

1 -^3 -^8 1 

and 

aXb + bX,+ cX2 = 0. 

All the curves C\ pass through the invariant points Pi, P2 , P3, 
P4 . Its tangent plane at P 2 is xs = 0. I t cuts the quintic surfaces 
in the curves x3 = 0, CiXi2x&z + csx2*Xi2 + c8xizx2

2 = 0. This curve has 
a double point at P2 , both branches being tangent to the in­
variant direction X3 — X4 = 0. When c3 = 0, the curve degenerates 
into a cuspidal cubic and a repeated line (the flex tangent, which 
is xi = xs = 0). If £3 = 8̂ = 0, the curve degenerates into five 
straight lines through P2 . They are Xi = x3 = 0 counted twice and 
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Xz = x4 = 0 counted three times. Hence these curves pass through 
P 2 along invariant directions. 

The tangent plane to P3 at P 3 is Xi = 0. I t cuts the quintic 
surfaces in the curves xi = 0, ^ x ^ + ^ t ó ^ + W ^ O . This 
curve is simple at P3 , passing through along the invariant direc­
tion xi = x2 = 0. When c6 = 0, the curve degenerates into a conic 
and three lines, one line (xi = x4 = 0) a simple tangent and the 
other (xi=x2 = 0) a repeated tangent. If 6̂ = 5̂ = 0, then the 
curve breaks up into the line Xi = x2 = 0 counted three times and 
the line X\ = x4 = 0 counted twice. 

THEOREM 8. The \ Ci \ curves pass through imperfect points only 
along invariant directions. 

5. Sections by Quartics. The dimension of the complete system 
of curves \D\ cut out on F by all surfaces of order four is 30, 
its genus is 19, and the number of variable intersections of two 
members of the system is 48. By use of | D\\ we find 

dix^x? + d2x£ x£ + dzx? Xi + d±X\x£ + d$x? x2x% = 0. 

We refer the curves Dx projectively to the hyperplanes of a 
linear space of four dimensions, and obtain a surface </>. The 
equations of transformation for mapping Ii upon <fi in 54 are 

pXi = x2x£,pX2 = xix£,pXz = X^XA, PXA = Xix£, 

pX$ = x?x2Xs. 
The two equations defining the surface are 

XXX£ = X2XsX, and aXxXh + bX2Xz + cXxXz = 0. 

All the curves D\ pass through the invariant points Pi , P2 , Pz, 
and P 4 . Consider the point P2 . Its tangent plane is x3 = 0. It 
cuts the quartic surfaces in the curves 

Xz = 0, d\X2XiZ + d3x?Xi + d±Xix£ = 0. 

This curve passes simply through P 2 along the Xi = x3 = 0 direc­
tion. When d4 = 0, the curve degenerates into a cuspidal cubic 
and the cusp tangent (x3 = x4 = 0). When d4 = di = 0, the curve 
breaks up into four lines through P2 . They are X\ — x$~0 
counted three times and x3 — x4 = 0 counted once. 

The tangent plane at P 3 cuts the quartic surfaces in the curves 
#i = 0, diX2Xiz+d2Xz2xA

2 = 0. The quartic curves degenerate into 
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conies and a repeated (tangent) line. When d2 = 0, they break 
up into XI = JC4 = 0 counted three times and Xi = x2 = 0 counted 
once. 

THEOREM 9. The \D\ | curves pass through imperfect points only 
along invariant directions. 

6. Sections by Cubics. Investigate the complete system of 
curves \E\ cut out on F by all surfaces of order three. Its di­
mension is 19, genus is 10, and the number of variable intersec­
tions of the two members of the system is 27. The use of |i£i| 
gives eix£xs+e2Xix£ + e3xix2x4==0. The equations of transforma­
tion for referring the curves E\ projectively to the lines of a 
plane are pX\ — x£xz, pX2 = xix£, pX$ =x\x2Xi. A curve aXi-\-bX% 
+ cX3 = 0 is obtained, instead of a surface. All the curves E\ 
pass through the invariant points Pi, P2 , P3, and P4. The tan­
gent plane to P3 at P 2 is x3 = 0. This intersects E\ surfaces in 
#3 = 0, xix2x4 = 0. Hence, the cubic curve becomes three straight 
lines, two of which pass through P2 , namely, Xi = ^3 = 0 and 
x3 = x4 = 0. At P 3 the tangent plane is #i = 0. It cuts the Ei sur­
faces in xi = 0, x2

2x3 = 0. This degenerate cubic curve also has a 
double point at P3 . The branches are Xi = ^2 = 0 counted twice. 
Hence the following theorem is proved. 

THEOREM 10. The system of invariant curves cut out upon F by 
surfaces of degree lower than seven all pass through the coincidence 
points along the invariant directions. The number of branches 
through each point is less than seven. 

B E R E A COLLEGE 


