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A CYCLIC INVOLUTION OF ORDER SEVEN

BY W. R. HUTCHERSON

1. Introduction. In an earlier paper,t the writer discussed a
cubic surface in ordinary three way space containing an involu-
tion of order five, Is. This paper concerns itself with a different
cubic surface which contains a cyclic involution, I.

2. Discussion of Iy Belonging to Fsin S;. Consider the surface

F3(:3€1,9C2,x3,x4) = ax22 X3 + bx32 X1 + CX1X2%4 = 0
in S3, invariant under the cyclic collineation 7" of order seven
x) twd tad xd = xytexqielxgiedny, (7= 1).

There are four invariant points, P;=(1,0,0,0), P.=(0, 1, 0, 0),
P;=(0,0, 1, 0), and P,=(0, 0, 0, 1). Each lies on the surface
F, and since these are the only possible invariant points, the
surface F has only four points of coincidence. It will be noticed,
however, that only P, and P; are simple points of F. Hence this
paper will not be interested in the two double invariant points,
P, and P,.

Consider a curve C, not transformed into itself by T, and pas-
sing through P,. Take the plane x;+Ax,=0 of the pencil passing
through P, and P,, tangent to C. This plane is transformed into

P28 and its equivalent P6 are regarded as part of the “formal” theory; but
both may be omitted, if preferred, without prejudice to the other postulates.)

What is perhaps the most obvious example of a “formal Principia system
with equality” is the system (K, C, +, /, =) obtained from Example 0.4 by
changing the word “correct” to “truistic.” The resulting example satisfies all
the Postulates P1-P6, P8-P11, but fails on P7 (since there are verdicts a such
that neither a nor ¢’ is a “truistic” verdict).

Thus the distinction between an “nformal Principia system with equality”
and a “formal Principia system with equality” depends on the inclusion or re-
jection of Postulate P7.

It is important to observe, however, that another, equally good, example
of a “formal Principia system with equality” is the system obtained from Ex-
ample 0.5 by changing the word “incorrect” to “absurd.” The mathematical
postulates by themselves give no precedence to the “truistic-or” interpretation
over the “absurd-and” interpretation.

t W. R. Hutcherson, Maps of certain cyclic involutions on two-dimensional
carriers, this Bulletin, vol. 37 (1931), pp. 759-765.
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x3+ eAxs=0 by T and hence is non-invariant. The curve cut out
on Fby x3+MAxs=01is therefore non-invariant. The common tan-
gent to the two curves is not transformed into itself. Hence the
two curves do not touch each other at P,. Since C was a variable
curve through P, satisfying the non-invariant property, it
follows that P, is a non-perfect coincidence point. A similar
argument shows that P, P3;, and Py are also non-perfect coin-
cidence points. The following theorem has been proved.

THEOREM 1. The Iy belonging to Fs; in S; has four non-perfect
points of coincidence.

Consider the complete system of curves ]A| cut out on F by
all surfaces of order seven. Its dimension is 84, its genus is 64,
and the number of variable intersections of two members of the
system is 147. A curve A of this system is not in general trans-
formed into itself by T. There are, however, seven partial
systems | 4;| in | 4| which are transformed into themselves. By
use of | 41| we find

a1%y’ + ax9" + a3xd + sy + asxidt xoxd + asnit xf x4
+ a7xf xf xsws + asxd vexd + aoxl xsxsd + aronf 2wy
+ anxfxf xf + apricexd o + asvinf o + arwiad ad
+ awx108%3 + arewexSry + anxtaf ¥f + 1% 2308 = 0.
We refer the curves 4; projectively to the hyperplanes of a lin-
ear space of seventeen dimensions. We obtain a surface ¢, of
order 21, with hyperplane sections of genus 10, as the image of

I;. The equations of the transformation for mapping I7 upon ¢
in Su are

pX, = xf, o X7 = xf xd xaxy, pX13 = xxfad,
pX, = x27, pXs = «af xzxxs, pX14 = 2108 364’,
pXs = xf, pXy = afxgast, pX15 = w1225,
o X = xd, X1 = x?xs x4, pX 16 = waxsbay,
pXs = x x2x42, pX1 = xfad xa2, pX17r = xf af xf,
pXe = xfxfxs,  pXi = xixexiasd, pX1s = xfxaxd.

By eliminating p, x1, 2, 3, x4 from these eighteen equations and
from Fy(xixexsxs) =0, we get as the fifteen equations defining
the surface:
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” X1 X5 Xsg X¢ X H X2 Xy Xu Xis Xy “ =0
X5 Xz Xir Xig Xao X0 X5 Xo X ’
X3 X1 Xir Xue —0 ‘ Xy X1z Xy2 HXls X12 _
X Xy Xis Xull 71X X1 Xs Xir X ’

and ¢X17+bX14+cX12=0. Designate by Py the branch point of
¢ corresponding to the point P, on F. The coordinates of P are
all zero except Xo.

The curves A; on F pass through P, if a;=0. The tangent
plane at P, to Fis x3=0. Now, the system of seventh-degree
surfaces passing through P. cuts x3=0 in the curves x;=0, and

2 —
a1%7" + awxd + asxltxaxd 4 a0 ast xg + apzrxd xd = 0.

For general values of the constants this is a seventh-degree
curve with a triple point at P,, two branches being tangent to
the line x;=x3=0 and one to the line x3=x4,=0. When as=a,
=a,3=0, the plane seventh-degree curve breaks up into seven
lines through P,. These are all distinct except when either a; =0
or a;=0, when they coincide with x3=x,=0 or x;=x3=0, re-
spectively. Since P, is non-perfect, the \Al\ through P, must
have seven distinct branches unless each branch touches one
of the two invariant directions. In the plane x; =0, the involu-
tion I; is generated by the homography 7%, which is

xf txd txf = x1iexyi x4,

By use of the plane quadratic transformation X: y1iysiy,
=wwsiwe iwiwy and its inverse X711 w1l wWslws=7Y¥ 1YaYai Y1y
as well as the transformation ¥: y:: vs: y4=wsws: ws : wiw, and
itsinverse Y~1:  wiiwsiws=72ys:y1y2:Y:2, We can investigate the
character of the adjacent invariant points along the two invar-
iant directions at P,. By the application of X T X '=TY,

(w1,we,ws) ¥ (2, ya,7192) 12 (892, €32y, €y132),
or

(fy 2, €12y, ylyz) (Swy, 2wy, wa).

Thus the new transformation Ty is xf :xy 1x{ = €Px1:€dxeixy.
The invariant point adjacent to P, along the line x;=x3=0 is
still a non-perfect coincidence point. Using on the next point
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YT{ Y1=T4', we find (w1, ws, wy) T (wy, €ws, wy). This point
is a perfect point of coincidence. This means that T3’ is
x! 1xd 1x{ =x1:€%2:x, and hence it is the collineation represent-
ing a perfect point for (0, 1, 0). Thus, by XT.X'and YT, Y7,
one finds a perfect point along x;=x3=0 in the neighborhood
of the second order of P,. Therefore the following is true.

THEOREM 2. Along the invariant dirvection x1=x3=0, the in-
variant point Py has an imperfect point in the first-order neighbor-
hood and a perfect one in the second-order neighborhood.

Next, investigate the characteristics of the adjacent point to
P, along the invariant direction x3=x,=0. By use of YT,¥!
=T4" we get

-1
(w1, w2, wy) ,Y\, (woa4, X129, x£) 1‘, (e'woxy, €X1%9, xF)

Y
~ (lwy, ews, wy).

Hence 75" is x{ :xd :x{ = €*x1:€x9:x, and this indicates an im-
perfect point adjacent to P, along x;=x,=0. Apply ¥V TJ Y—!
=T, and find (w1, ws, wy) ~ (w1, €'ws, wy). Since Ty" becomes
xf ixd tx{ =x1:€ x9:%4, we are assured of a perfect point in the
second-order neighborhood of P, along this invariant direction.
Hence the theorem follows.

THEOREM 3. Along the invariant direction xy=x3=0, the in-
variant imperfect point Py has an imperfect point in the first-order
neighborhood and a perfect one in the second-order neighborhood.

The following theorem is now self-evident.

THEOREM 4. The imperfect point Py on F3 has no perfect points
in the neighborhood of the first order but precisely two perfect ones
in the neighborhood of the second order.

The tangent plane to Fat P;=(0,0, 1, 0) is x,=0. The homog-
raphy T3 in x1=0 is x4 xf :xf =x.: ex3: €2xs. To investigate
the adjacent points to P; along the two invariant directions
x1=x3=0 and x;=x,=0, one needs the following two quad-
ratic transformations and their inverses:

Y;: V2iY3i V4 = W3Wy: w32 Wy,
Vil wolwsiws = y3y4l y2y3t y¢,
X VoiVgi V4 = ZZ’Q'LE)4:1032:7.02'ZZ)3,

X1l welwsiws = yEIy3yayays.
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Apply X:1T3X:"'=T{ along x1=x,=0 adjacent to Ps. Then we
have

-1
(ws, ws, w) XL (V& ¥ays, y233) 1 (€2y 2, € y3y4, €2y3)
,i: (6'102, 627.03, W4) .

Since T4 is x4 x4 :x{ = €xs: €?x3:%4, we have an imperfect point.
By using V174 Vi~1=T4%', we get

(‘ZJZ)Q, wWs, ‘ZU4) T,l: (6271)2, 63703, 62'104) .

Hence we have a perfect point.

THEOREM 5. Along the invariant direction x1=x,=0, the in-
variant imperfect point Py has an imperfect adjacent point and a
perfect one in the neighborhood of the second order.

Now consider the possibilities along x;=x4=0, the other in-
variant direction. Apply V173V, '=T;3"and get

(w2, w3, wy) ~ (Sws, ews, wy),

which signifies an imperfect point. Applying ¥,73" V,—t=T35"",
we get (we, ws, wi) ~(ws, €*w;, e’w,), another imperfect point. By
use of X1 T390 X1~ 1= T30, we get (wq, ws, wy) ~ (e3wy, ews, €3wy),
which indicates that T3¢ is x4 :x{ :x{ = e2xy:x3: €2x4. Hence we
have found a perfect point, and the theorem follows.

THEOREM 6. Along the invariant direction x;=x,=0, the in-
variant imperfect point Ps has no perfect points in the first- and
second-order mneighborhoods but does have one in the third-order
neighborhood.

3. Sections by Sextics. Consider the complete system of curves
| B| cut out on F by all surfaces of order six. Its dimension is 63,
its genus is 46, and the number of variable intersections of two
members of the system is 108. A curve B of this system is not
in general transformed into itself. There are, however, seven
partial systems | B;| in | B| which are transformed into them-
selves. By use of | By| we find

brayxd + brxaxsnyt 4 bsxd xd + buvladad 4+ bsad asad 4 bextxy
+ brwiwd asay 4 bswf wond wy + boxf g + broxixf ad

+ buasdt xd 4 braxSay = 0.

If we refer the curves Bp projectively to the hyperplanes of a
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linear space of eleven dimensions, we obtain a surface ¢. The
equations of transformation for mapping I7; upon ¢ in Sy are

pX1 = x1x45, pX5 = xf xax42, pXg = x12 xs‘,
pX2 = xpnsadt, pXs = x8xy, pX10 = wxdad,
pX;3 = xfuxd, p X7 = 2125 X3%4, pX11 = xtad,
pXy= xtafxd, pXs = xfx0xd x4, pX1s = x,5%,.

By eliminating p, x1, %2, %3, x4 from these twelve equations and
from F3(x1,x9,x3,%4) =0, we get as the nine equations defining
the surface

X1 X4 Xy _0 H Xy X: X — 0
X: X1 Xu ’ Xs Xn Xu ’
H X7 X1 Xs ’ ~0 [’ Xs X2 X3 ’ —0
Xs Xy Xy ’ X2 X4 X ’

and e X+ 0Xg+cX,=0.

All the curves B; pass through the invariant points P;, Ps,
P;, P,. Consider point P;. Its tangent plane is x3=0. It cuts
the sextic surfaces in the curves

X3 = O, bxrxd + b41‘12 xf xd + bexPxy + brpxPae = 0.

This curve passes simply through P. along the invariant direc-
tion x3=x,4=0. If b3=0, the curve degenerates into a line and a
quintic with a triple point formed by a simple branch passing
through a cusp. The line is the simple tangent at the triple point,
while the cuspidal tangent cuts the curve again at an undula-
tion. If bg=0,=0, the curve degenerates into a quintic with a
five-fold point (having five coincident tangents) and a line, the
tangent at the five-fold point. If bs=0,=01,=0, P, is a six-fold
point. The curve breaks up into six lines, one of which is x; =x3
=0, while the other five are x5=x4=0 counted five times. Thus
the system of B; curves passes through P, along invariant
directions.

The tangent plane at P is x;=0. It cuts the sextic surfaces
in the curves x, =0, boXoxaxs? + bsxa®xs® + bex2Pxs + b1ixatxs? = 0. Py is
a special triple point on these curves having three coincident
tangents. The curves touch at P; along the invariant direction
x1=x4=0. If b3=0, then the curve passes through P; four times
and is tangent to x;=x,=0 four times. When b;=0b1=0, the
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curve is five fold at Pj, passing through along the invariant
direction x; =x,=0 once and along x;=x,=0 four times. When
bs=b11=0,=0, the curve breaks up into six lines through P;,
namely, x1=x4=0 counted simply and x;=x2=0 counted five
times. The following theorem may be stated.

THEOREM 7. The |311 curves pass through the imperfect points
only along the invariant divections.

4. Sections by Quintics. The complete system of curves | C|
cut out on F by all surfaces of order five has dimension 45,
genus 31, and the number of variable intersections of two mem-
bers of the system is 75. There are seven partial systems l C.-|
in |C| which are transformed into themselves. By the use of
| Ci| we find

axfxd + caxixexsxd + caxd wd + cowiwd x4 + csxf wf x4
+ cowexst + craftas + caxlfad = 0.

By referring the curves C; projectively to the hyperplanes of a
linear space of seven dimensions, we obtain a surface ¢. The
equations of transformation for mapping I; upon ¢ in Sy are

pX1 = xilfxd, pXs = xf x42, pXs = xf xf x4, pX7 = xfxs,

_ 2 — — —
pXo = xixaxsxnf, pX4= xxf x4, pXs = x2x34, pXs = af xf

Eliminate p, xi1, %2, %3, x4 from these eight equations and from
Fs(x1, x5, x3, x4) =0. The five equations defining the surface ¢ are

o]

dXs + bX4+ CX2 = 0.

X3 X
Xs Xe

)

l X1 X?. X4
X2 X5 X

. ‘X2X7
s X, Xs

and

All the curves Ci pass through the invariant points Pi, P, Ps,
P,. Its tangent plane at P, is x;=0. It cuts the quintic surfaces
in the curves x3 =0, c1x:2x 4+ csx3x 2+ csx1°x92 = 0. This curve has
a double point at P,, both branches being tangent to the in-
variant direction x3 =x4=0. When ¢; =0, the curve degenerates
into a cuspidal cubicand a repeated line (the flex tangent, which
is x1=x3=0). If c3=¢3=0, the curve degenerates into five
straight lines through P,. They are x;=x; =0 counted twice and
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x3=x4=0 counted three times. Hence these curves pass through
P, along invariant directions.

The tangent plane to F; at P; is x1=0. It cuts the quintic
surfaces in the curves x; =0, c3x:°x 42+ csxo2x52x 4+ cex9x3* = 0. This
curve is simple at Pj, passing through along the invariant direc-
tion x;1 =%, =0. When ¢;=0, the curve degenerates into a conic
and three lines, one line (x;=x,=0) a simple tangent and the
other (x1=x,=0) a repeated tangent. If ¢s=c¢;=0, then the
curve breaks up into the line x; =x,=0 counted three times and
the line x; =x,=0 counted twice.

THEOREM 8. The [Cl | curves pass through tmperfect points only
along invariant directions.

5. Sections by Quartics. The dimension of the complete system
of curves | D| cut out on F by all surfaces of order four is 30,
its genus is 19, and the number of variable intersections of two
members of the system is 48. By use of | D] we find

dix.xd + doxd x2 + dyxd x4 + daxrixd + dswd x5 = 0.

We refer the curves D; projectively to the hyperplanes of a
linear space of four dimensions, and obtain a surface ¢. The
equations of transformation for mapping I; upon ¢ in S; are

pX1 = aaxf,pXo = xfxf,pX3 = xfwy, pX4 = 2128,

p X5 = x?xoxs.
The two equations defining the surface are

)(1)((,2 = X2X3X4 and dX1X5 + szXa + CXlXa = 0.

All the curves D; pass through the invariant points Pi, Ps, Ps,
and P,. Consider the point P,. Its tangent plane is x3=0. It
cuts the quartic surfaces in the curves

X3 = 0, d1x2x43 + d3x13x4 ‘I— d4x1x23 = 0,

This curve passes simply through P, along the x;=x3=0 direc-
tion. When d,=0, the curve degenerates into a cuspidal cubic
and the cusp tangent (x;=x,=0). When d,=d,=0, the curve
breaks up into four lines through P, They are x1=x3=0
counted three times and x5 =x;=0 counted once.

The tangent plane at P; cuts the quartic surfaces in the curves
x1=0, dixoxd+daxs?x2=0. The quartic curves degenerate into
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conics and a repeated (tangent) line. When d; =0, they break
up into x;=x,=0 counted three times and x1=x,=0 counted
once.

THEOREM 9. The |D1 | curves pass through imperfect points only
along invariant directions.

6. Sections by Cubics. Investigate the complete system of
curves | E| cut out on F by all surfaces of order three. Its di-
mension is 19, genus is 10, and the number of variable intersec-
tions of the two members of the system is 27. The use of |E1|
gives ey x3+ eax1cd +esx1x204 =0. The equations of transforma-
tion for referring the curves E; projectively to the lines of a
plane are p X1 =x#x3, pXo =x10¢, p X3 =x10%¢. A curve aX1+bX,
+c¢X;3;=0 is obtained, instead of a surface. All the curves E;
pass through the invariant points Py, Pz, P, and P,. The tan-
gent plane to F; at P is x3=0. This intersects E; surfaces in
x3=0, x1x20, =0. Hence, the cubic curve becomes three straight
lines, two of which pass through P,, namely, x;=x;=0 and
x3=x4=0. At P; the tangent plane is x;=0. It cuts the E; sur-
faces in x; =0, x.2x; =0. This degenerate cubic curve also has a
double point at P;. The branches are x; =x,=0 counted twice.
Hence the following theorem is proved.

TureorREM 10. T'he system of invariant curves cut out upon F by
surfaces of degree lower than seven all pass through the coincidence
points along the invariant directions. The number of branches
through each point is less than seven.
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