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LINEAR ASSOCIATIVE ALGEBRAS OF INFINITE
ORDER WHOSE ELEMENTS SATISFY FINITE
ALGEBRAIC EQUATIONS*

BY H. H. CONWELL

1. Introduction. It is the purpose of this paper to investigate
linear associative algebras of infinite order, whose elements
satis{y finite algebraic equations with coefficients in a field =.
The definitionf of an algebra, and the first three postulates}
assumed, will be the same as those employed by L. E. Dickson
for a finite algebra, but in place of Dickson’s postulates for a
finite basis we shall employ postulates IV and V as follows.

PoSTULATE IV. There exists in A a set of elements§ U of such
a nature that for every a0 there is determined uniquely a positive
integer n, a set of disiinct elements ui, s, + - -, U, of U, and n
non-gero elemenss &1, &, - - -, £n of B such thar a = 71— £,

PosTULATE V. For every element a of A there exists a poly-
nomial function h(N), with coefficients in &, such that h(a) =0.

2. Idempotent Elements; Semi-Nilpotent Algebras.
TrEOREM 1. Every algebra A contains an idempotent element
unless all its elements are nilpotent.

For if ¢ is any non-zero non-nilpotent element of A whose
minimum|| equation is g(A) =0, of degree #, then the finite sub-
algebra B=(a, a?, a? - - -, a®) of A, contains an idempotent
element.

THEOREM 2. If an algebra A is not semi-nilpotent,§ but con-

* Presented to the Society, April 9, 1932.

1 L. E. Dickson, 4lgebras and their Arithmetics, University of Chicago Press,
pp. 9-11, cited hereafter as Dickson.

1 For the convenience of the reader, references will be made to Dickson,
wherever possible, whether or not this constitutes the original source.

§ The set U is not assumed enumerable except in the example of §2, the
subalgebra M of 4 in Theorem 11, and in Theorem 13.

” The equation g(A\) =0 of lowest degree, with rational coefficients and lead-
ing coefficient unity, for which g(a) =0, will be called the minimum equation
of a.

9 An algebra 4 will be called semi-nilpotent if all its elements are nil-
potent, and semi-simple if it contains no properly nilpotent elements.
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tains a maximal® semi-nilpotent invariant sub-algebra K, then K
s unique.

For if K’ is any other semi-nilpotent invariant sub-algebra
of 4, then K+ K’ is invariant in A. Moreover, if k; and k{ are
any two elements of K and K’, respectively, then (k;+k{)2f
= (ko+Fk'*)B=k,f=0, where k, is in K and the indicest of %/
and k, are a and @, respectively. Therefore K+ K’ is a semi-
nilpotent invariant sub-algebra of A. But K is maximal, hence
K+K’'=K, or K’ is contained in K.

LEMMA. Any non-zero element a of an algebra A, which is not
properly nilpotent in A, possesses an inverse with respect to some
idempotent element e of A, that is, an element x such that ax=e.

For otherwise, the sub-algebra a4 contains no idempotent
element and hence is semi-nilpotent and «a is properly nilpotent
in 4, contrary to hypothesis.

THEOREM 3. If a and b are any two properly nilpotent elements
of an algebra A, then their sum a-+b is also properly nilpotent in
A.

The contrary assumption necessitates the existence in 4 of
elements x and e such that (a+0b)x =ax-+bx=p+qg=e, where e
is idempotent and epe and ege are zero or properly nilpotent.
Therefore, if « is the index of epe, (epe)*= (e—ege)*=0, and
hence e=aige, (a1 in 4). But aige is properly nilpotent in 4,
whereas e is idempotent. This contradiction implies that a4b is
properly nilpotent in 4.

THEOREM 4. An algebra A which is not semi-nilpotent contains
properly nilpotent elements if and only if it possesses a maximal
semi-nilpotent invariant sub-algebra K, and then the properly nil-
potent elements of A coincide with the non-zero elements of K.

The first part of the theorem follows at once from the defini-
tion of K. To prove the second part, represent the aggregate of
properly nilpotent elements in 4 by B. By means of Theorem 3
we can show that B is a semi-nilpotent invariant sub-algebra of
A4, and since it contains all the properly nilpotent elements of 4
it is maximal and hence is identical with K (Theorem 2).

* Dickson, p. 32.
t If « is an integer such that a*=0, but ¢*150, « is the index of a.
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An algebra A may be decomposed into the form
(1) A =1+ ¢R + Le + eAe,

in which e is idempotent, I contains all elements x of 4 such
that ex=xe=0, R=I-+eR contains all elements y of 4 such
that ye=0, and L =TI+ Le contains all elements z of 4 such that
ez=0.

THEOREM 5. If e is a principal idempotent element of A, every
non-zero element of I, L, and R in (1) is properly nilpotens.

PROOF. (Le)?=0=(eR)?. Since eLR=LRe=0, it follows that
LR=1I.1f x and z are any two non-zero elements of I and Le,
respectively, then (x+42)" =x"42,_1, (2,1 in Le). Since x is nil-
potent with an index «, (x+2)2¢=2%_,=0, (341 in Le). Thus
each element of L is zero or nilpotent. Likewise each element of
R is zero or nilpotent.

ARe=0=Re, and eLA=0=e¢eL, hence ARZR and LA L.
Therefore the elements of R and L, and hence of their intersec-
tion [, are properly nilpotent in 4.

THEOREM 6. Every algebra A with a principal idempotent ele-
ment, but no principal unit, has a semi-nilpotent invariant sub-
algebra K.

This theorem is a direct consequence of Theorems 4 and 5.

Any semi-simple algebra A of finite order which is not simple is
reducible.* The proof of this theorem depends upon the theorem,
Any invariant sub-algebra of a semi-simple algebra of finite order
possesses a principal unit. The following example exhibits the
failure of the latter theorem for infinite algebras, and the sub-
algebra B illustrates the failure of two other theorems.

(1) Every finiie linear associative algebra which is not nilpotent
contains a principal idempotent element.*

(2) Every finite algebra with no principal unit has a nilpotent
invariant sub-algebra.*

ExAMPLE. Let A = (e, u1, 2, us, - - -+ ) in which eu;=u,e=u;,
et=e,u? =u;, uu;=u;u;=0,17%j. Then A is a semi-simple alge-
bra with the principal unit e, and an invariant sub-algebra

* Dickson, pp. 49-53.
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B = (u, ug, us, + - - ) which contains no principal unit, no prin-
cipal idempotent element and no nilpotent invariant sub-
algebra.

3. Difference Algebras.* THEOREM 7. If an algebra A is not
semi-nilpotent, but contains the maximal semi-nilpotent invariant
sub-algebra K, then the difference algebra A — K contains no semi-
nilpotent invariant sub-algebra.

For suppose 4 — K has a semi-nilpotent invariant sub-algebra
K,. The elements of 4 —K are classes [a] of elements of A.
Represent by B all elements of A4 belonging to classes [6] of
A — K which are in K;. From the definition of K;, B is an alge-
bra. If @ and b are any two elements of 4 and B, respectively,
then [a][b]=[ab] is in K, and also in B—K. Hence B is in-
variant in 4, and B—K =K, or B> K. All elements of B are
nilpotent and hence B is a semi-nilpotent invariant sub-algebra
of A. But B>K contrary to the hypothesis on K, therefore
A — K contains no semi-nilpotent invariant sub-algebra.

THEOREM 8. Every idempotent class |[u] of A —K contains
idempotent elements of A.

ProoF. [u]= [u?]=[u3]= - - =[u*], and [«]#[0]. Hence
u is not nilpotent. If the minimum equation of « is of degree #,
the finite sub-algebra B=(u, u?, - - -, u*), of 4, contains an
idempotent element e=§u+&u2+ - - - +&ur, (& in E),
(Theorem 1). Hence [e]=¢[u], (§=&+E&+ - - - +&,). There-
fore, £lu]=[e]=[e]?=82[u]?=¢2[u], and hence £=1, since
£=0 implies [e]=[0] and e nilpotent. Thus e is an idempotent
element of A4, in class [u] of 4 —K.

THEOREM 9. If u is a primitive* idempotent element of A, and
K is a maximal semi-nilpotent invariant sub-algebra of A, then
[#] is a primitive idempotent element of A —K.

THEOREM 10. If e is a principal* idempotent element of A, then
le] is a principal idempotent element of A —K and is identical
with its principal unit.*

Theorem 9 is easily proved by means of Theorems 1 and 8,
while Theorem 10 follows readily from Theorems 5 and 6.

* Dickson, pp. 36-40, 55, 49, 15.
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TuEOREM 11. If A has the maximal semi-nilpotent invariant
sub-algebra K, and A —K contains a simple* matric algebra M,
with an enumerable base, then A contains a sub-algebra equivalent
to M.

ProOF. Let M = [e;;] be a simple matric algebra of classes, in
which [eii] [éjk] = [fik], [eii] [th] = [O]! (J#h! 1, k, jv h=1, 2,
3, ). With ey in [en], (Theorem 8), as a basis for induction
we shall first prove that A contains idempotent elements
e, e, - - - whose products in pairs are zero and such that e;;
is in [6,’{].

Let s=) 7 lei;, where e;e;;=0, i5j, and e;; is in [e;;]. Let
b, be any element of 4 in [e,,] and let a, =b, —sb, —b,s+sb,s.
Then e;;a, =0=a,e;;, and [a,]= [6.] = €], and hence [a,][e:]
=[0]=[e:s][an], i=1,2, - - -, n—1). The sub-algebra B = (a.,
al, - -, ak), of A, contains an idempotent element e,, in
[€nn], (Theorem 8), such that eu,e;;i=0=e;enn, i n. Therefore
A contains idempotent elements ey, e, €33, - + -+ whose products
in pairs are zero and such that e,; is in [e;;] of M.

Now consider the non-zero elements ay; and b1 of 4, in [ey]
and [e;1] of M, respectively. Let e;;=enasje;;, and aj=ejben.
Then [e;] [a;1] = [en] and hence ey;a,, =en-+k, (kin K, with in-
dex a). Moreover, en€;a6j1=e1;a;;, and hence en(en+k) =en+k,
or enk==k. Similarly, ken=%k. Let ej=an—ank+tak?—ak?
+ -+« 4+ (—=1)t gyk>t, Then

eien = (en 4 k) — (B + k) 4 - + (= Dei(ke1 + 39)
= e;1 + k* = e,

Similarly, eei;=¢;;+k1, (ki in K). Hence from the definitions
of a1, ey, and e;i, it follows that e;ki =kiejj=Fk1.. Therefore
(e,~,-+k1)2=e,-j+2k1+k12 = (6,’181,‘)2=6H+k1, and k12 = —kl, from
which kfe= —k, =0, since k; is nilpotent. Therefore, e;jie1; =e¢;;.

Let €i; = €41€15, (651 in [6,‘1], €1 in [615]). Then €i; is in [6,-]-].
From the definitions of e;; and e;;, and preceding relations, it
follows that

* If A is an algebra of matrices having only a finite number of non-zero
elements in each matrix, and if the base elements (ux), (¢, k=1, 2, - - - ), of
A are matrices whose elements are all zero except that in the kth row and Ath
column, which is unity, then the algebra M = (e;) equivalent to A, in which
(3, 7) have the same range as (%, %), will be called a simple matric algebra with
the base elements ¢;;. Thus e;jejr= eix, ejen=0, h7=j.
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€€l = €ik, and e;ilhky = (65161j617‘)(€hh6’h161k) =0, .7 = h.

This completes the proof that A contains elements e;; in
classes [e;;] of M, respectively, and such that the elements e;;
constitute the base of a sub-algebra of 4 which is equivalent to

M.

4. Canonical Form of the Matrix R. Every linear associative
algebra satisfying the postulates of this paper is equivalent* to a
matric algebra, and hence an element of the algebra, and its
matric representation, must satisfy the same minimum equa-
tion. Every finite matrix can be reduced to a rational canonical
form, but this is not true for matrices of infinite order.

Let R,= (p;) correspond to a =Y ;£u;, where pr; =) Ecviin,
and v, is the coefficient of #; in the product u#,u;. Since the
number of terms #;, in any product #;u; is finite, R, will have but
a finite number of non-zero elements in any column. Let
Wi=2kpk,~ui, where & has an infinite range, but only a finite
number of the p;;are not zero.Let x1 =Zi ciug, and Xqp =Zic,~W,-,
be any two corresponding finite linear functions of #; and W;,
respectively, ¢; in E. Then Xu=2 uCipritts=%12, and simi-
larly, X, ZZik cipriWi= ZithiPkiphkuh =Zihcip;u:uh =x13, X13=
S acip Wh =Ziicip§%)u,-=x14, etc., where pf{j_l) is the element in
the kth row and jth column of (ox;)”. These relations may be
written more briefly in the form

’

X131 = Eciui7X11 = ZCiPii“J‘ = %12, X12 = Zcipfi“f = %13,

(1) % 77 i
(r—1)
o Xip = Docipyi i = Fie, -
i

If the minimum equation of @ is A™+ £, A" 14 - - - +EN+£
=0, then

(m—1) (m—2)

pii Tt Emp o FEpu=0, (%74 1,7=123,--:),
(m=1) (m—

pii |+ Ewpit e Epu B0 = 0.

Therefore

Xim + EnXimer + -+ + EX11 + 0¥ = 0,

* M. H. Ingraham, this Bulletin, vol. 32 (1926), p. 589.
1 L. E. Dickson, Modern Algebraic Theories, p. 89.
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which proves the following theorem.

THEOREM 12. If (pi;) satisfies an equation of degree m, with
rational coefficients, the number of linearly independent linear
functions xu, Xu, + + -, X1, as determined in (1), is a < m.

In what follows we shall write (1) in the form

X1 = 19, X2 = %13, -+, Xia—1 = X1q
(1) &
Xia = quxu = [xu, ity xm]-
i=1

Any finite linear expression Y ;ciu; leads to a chain of the
type of (1’). The maximal length of all such chains is oy < m.

THEOREM 13. If R, = (p;) corresponds to the element a =Y, ;c.u;
of a rational linear associative algebra A, with the enumerable base

(w1, u, us, -+ - ), then R, may be reduced to a canonical form de-
fined by
Xfil = X2y " 0, Xiioti—l = Xisaiy
(2) Xija; = [xiil; Xiszy "y xiiai]’
(i=172"" :P§a1§ji=1;2:3,"'):

in which X1, X2, + + +, Xjo; are the elements of the jith chain of
length «;, each of which is linearly independent of all preceding
chains of length o, oz, + - -, a1 and the preceding elements of the

jith chain of length o;. Moreover, oy is the maximal length of all
possible chains, and in gemeral, a; is the maximal length of all
chains of length less than a; 1 which are linearly independent of
all chains of lengih on, o, -+ + , ai_1.

Proofs of this theorem for the finite case that have been
given by L. E. Dickson (Modern Algebraic Theories, p. 90), or
M. H. Ingraham (this Bulletin, vol. 39, p. 379), may be ex-
tended to the infinite case, provided we secure the leaders of
successive chains as follows.

The leader, x1; =Zic,~u,-, of the first chain of length oy may
be obtained from successive trials of the linear functions Z,-ciui

such that Zi=n, (n=1, 2, - - -, k). The leaders of the suc-
ceeding chains of length a; may be obtained in the same way
with Z’i=n, (n=k1, k1+1, k1+2’ T k2; k2; k2+1y Tty k3;

etc.). To obtain the chains of length as, as, etc., repeat the entire
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process for as, then for as, etc. With (1’) as a basis for induction
we can prove that the kth chain of length «; can be expressed in
the form

(3) X1 =Xk2, ", szxl—l = Xka,y Xka, = [xkl, Xkgy * xlcal]-

Similarly, all chains of length «; can be reduced to forms of
the type of (3). We can thus reduce (px;) to the canonical form
defined by (2), in which there are infinitely many partial trans-
formations, but not more than o, different lengths to the chains.

Each of the base elements w1, us, u3, - - -, either is itself an
element of (2), or else is a finite linear combination of such
elements. For, in the process of determining the complete ca-
nonical transformation, any %; which is finitely linearly inde-
pendent of all previously determined x; is taken as the leader
of a new chain and is therefore itself an x;. Hence it is possible
to determine uniquely each of the variables #; in terms of the
variables x;.

The characteristic determinant of the matrix of any chain is
divisible by that of any other chain of equal or lower order.
Hence the minimum function of (ox;) is identical with that of
the chain of maximal length, and if (px;) satisfies no finite equa-
tion it cannot be reduced to a rational canonical form with a
chain of maximal length «.
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