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LINEAR ASSOCIATIVE ALGEBRAS OF I N F I N I T E 
ORDER WHOSE E L E M E N T S SATISFY F I N I T E 

ALGEBRAIC EQUATIONS* 

BY H. H. CONWELL 

1. Introduction. It is the purpose of this paper to investigate 
linear associative algebras of infinite order, whose elements 
satisfy finite algebraic equations with coefficients in a field 2 . 
The definition f of an algebra, and the first three postulates % 
assumed, will be the same as those employed by L. E. Dickson 
for a finite algebra, but in place of Dickson's postulates for a 
finite basis we shall employ postulates IV and V as follows. 

POSTULATE IV. There exists in A a set of elements^ U of such 
a nature that for every a ̂  0 there is determined uniquely a positive 
integer n, a set of distinct elements u\, 14$, • • • , un of U, and n 
non-zero elements £i, £2f • • * , £w of 2 such that a^Tfl^&iUi. 

POSTULATE V. For every element a of A there exists a poly­
nomial f unction A(X), with coefficients in 2 , such that h(a)=0. 

2. Idempotent Elements; Semi-Nilpotent Algebras. 

THEOREM 1. Every algebra A contains an idempotent element 
unless all its elements are nilpotent. 

For if a is any non-zero non-nilpotent element of A whose 
minimum|| equation is g(X) =0 , of degree n, then the finite sub-
algebra B = (a, a2, a3, • • • , an) of A, contains an idempotent 
element. 

THEOREM 2. If an algebra A is not semi-nilpotent,\ but con-

* Presented to the Society, April 9, 1932. 
f L. E. Dickson, Algebras and their Arithmetics, University of Chicago Press, 

pp. 9-11, cited hereafter as Dickson. 
% For the convenience of the reader, references will be made to Dickson, 

wherever possible, whether or not this constitutes the original source. 
§ The set U is not assumed enumerable except in the example of §2, the 

subalgebra M of A in Theorem 11, and in Theorem 13. 
|| The equation g(\) = 0 of lowest degree, with rational coefficients and lead­

ing coefficient unity, for which g(a)=0, will be called the minimum equation 
of a. 

1f An algebra A will be called semi-nilpotent if all its elements are nil-
potent, and semi-simple if it contains no properly nilpotent elements. 
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tains a maximal* semi-nilpotent invariant sub-algebra K, then K 
is unique. 

For if K' is any other semi-nilpotent invariant sub-algebra 
of A, then K+K' is invariant in A. Moreover, if ki and k{ are 
any two elements of K and K'', respectively, then (ki + k{)aP 
= (ka + ki'a)(i = kj = 0, where ka is in K and the indicesf of k( 
and ka are a and /3, respectively. Therefore K-\-Kf is a semi-
nilpotent invariant sub-algebra of ^4. But i£ is maximal, hence 
K+K' = K, or K' is contained in i£. 

LEMMA. Any non-zero element a of an algebra A, which is not 
properly nilpotent in A, possesses an inverse with respect to some 
idempotent element e of A, that is, an element x such that ax = e. 

For otherwise, the sub-algebra aA contains no idempotent 
element and hence is semi-nilpotent and a is properly nilpotent 
in A, contrary to hypothesis. 

THEOREM 3. If a and b are any two properly nilpotent elements 
of an algebra A, then their sum a+b is also properly nilpotent in 
A. 

The contrary assumption necessitates the existence in A of 
elements x and e such that (a + b)x = ax-\-bx = p+q = e, where e 
is idempotent and epe and eqe are zero or properly nilpotent. 
Therefore, if a is the index of epe, (epe)a = (e — eqe)a = 0, and 
hence e = aiqe, (a\ in A). But a\qe is properly nilpotent in A, 
whereas e is idempotent. This contradiction implies that a+b is 
properly nilpotent in A. 

THEOREM 4. An algebra A which is not semi-nilpotent contains 
properly nilpotent elements if and only if it possesses a maximal 
semi-nilpotent invariant sub-algebra K, and then the properly nil-
potent elements of A coincide with the non-zero elements of K. 

The first part of the theorem follows at once from the defini­
tion of K. To prove the second part, represent the aggregate of 
properly nilpotent elements in A by B. By means of Theorem 3 
we can show that B is a semi-nilpotent invariant sub-algebra of 
A, and since it contains all the properly nilpotent elements of A 
it is maximal and hence is identical with K (Theorem 2). 

* Dickson, p. 32. 
f If a. is an integer such tha t aa=0, but aa _ 15^0, a is the index of a. 
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An algebra A may be decomposed into the form 

(1) A = / + eR + Le + eAe, 

in which e is idempotent, I contains all elements x of A such 
that ex = xe = 0, R = I+eR contains all elements y of A such 
that ye = 0, and L = I-{-Le contains all elements z of A such that 
ez = 0. 

THEOREM 5. If e is a principal idempotent element of A, every 
non-zero element of I, L, and R in (1) is properly nilpotent. 

PROOF. (Le)2 = 0 = (eR)2. Since eLR = LRe = 0, it follows that 
LR-^I. If x and z are any two non-zero elements of I and Le, 
respectively, then (x+z)n = xn+zn-i, (zn-i in Le). Since x is nil-
potent with an index a, (x+z)2<x = z2

a-i = 0, (za-i in Le). Thus 
each element of L is zero or nilpotent. Likewise each element of 
R is zero or nilpotent. 

ARe = 0 = Re, and eLA=0 = eL, hence AR^R and LA^L. 
Therefore the elements of R and L, and hence of their intersec­
tion I, are properly nilpotent in A. 

THEOREM 6. Every algebra A with a principal idempotent ele­
ment, but no principal unit, has a semi-nilpotent invariant sub-
algebra K. 

This theorem is a direct consequence of Theorems 4 and 5. 

Any semi-simple algebra A of finite order which is not simple is 
reducible* The proof of this theorem depends upon the theorem, 
Any invariant sub-algebra'of a semi-simple algebra of finite order 
possesses a principal unit. The following example exhibits the 
failure of the latter theorem for infinite algebras, and the sub-
algebra B illustrates the failure of two other theorems. 

(1) Every finite linear associative algebra which is not nilpotent 
contains a principal idempotent element* 

(2) Every finite algebra with no principal unit has a nilpotent 
invariant sub-algebra * 

EXAMPLE. Let A = {e, u\, u2, Uz, • • • ) in which eUi = Uie = Ui, 
e2 — e, u? ~Ui, UiU3- = UjUi = 0, i^j. Then A is a semi-simple alge­
bra with the principal unit e, and an invariant sub-algebra 

* Dickson, pp. 49-53. 
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B = (wi, u2, U3, • • • ) which contains no principal unit, no prin­
cipal idempotent element and no nilpotent invariant sub-
algebra. 

3. Difference Algebras * THEOREM 7. If an algebra A is not 
semi-nilpotent, but contains the maximal semi-nilpotent invariant 
sub-algebra K, then the difference algebra A—K contains no semi-
nilpotent invariant sub-algebra. 

For suppose A—K has a semi-nilpotent invariant sub-algebra 
Ki. The elements of A—K are classes [a] of elements of A. 
Represent by B all elements of A belonging to classes [b] of 
A—K which are in K\. From the definition of K\, B is an alge­
bra. If a and b are any two elements of A and B, respectively, 
then [a][&]= [ab] is in K\ and also in B — K. Hence B is in­
variant in A, and B — K = Ki, or B>K. All elements of B are 
nilpotent and hence B is a semi-nilpotent invariant sub-algebra 
of A. But B>K contrary to the hypothesis on K, therefore 
A—K contains no semi-nilpotent invariant sub-algebra. 

THEOREM 8. Every idempotent class [u] of A—K contains 
idempotent elements of A. 

PROOF, [U] = [u2] = [us] = • • • = [ua], and [w]?*[0]. Hence 
u is not nilpotent. If the minimum equation of u is of degree n, 
the finite sub-algebra B — {u, u2, • • • , un), of A, contains an 
idempotent element e = ^iu + ^2u

2+ • • • +%nu
n, (£,- in E), 

(Theorem 1). Hence [e] = £[w], (£ = £i + £2+ • • • + £n). There­
fore, %[u] = [e] = [e]2 = £2[w]2 = £2[^], and hence £ = 1, since 
£ = 0 implies [e] = [O] and e nilpotent. Thus e is an idempotent 
element of A, in class [u] oî A—K. 

THEOREM 9. If u is a primitive* idempotent element of A, and 
K is a maximal semi-nilpotent invariant sub-algebra of A, then 
[u] is a primitive idempotent element of A—K. 

THEOREM 10. If e is a principal* idempotent element of A, then 
[e] is a principal idempotent element of A—K and is identical 
uith its principal unit.* 

Theorem 9 is easily proved by means of Theorems 1 and 8, 
while Theorem 10 follows readily from Theorems 5 and 6. 

* Dickson, pp. 36-40, 55, 49, 15. 
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THEOREM 11. If A has the maximal semi-nilpotent invariant 
sub-algebra K, and A—K contains a simple* matric algebra M> 
with an enumerable base, then A contains a sub-algebra equivalent 
toM. 

PROOF. Let M — [e»,-] be a simple matric algebra of classes, in 
which [«.-ƒ] [«ƒ*] = [€**], [€»•ƒ][€**]= [0], OVA, i, k, j , h = l, 2, 
3, • • • )• With en in [en], (Theorem 8), as a basis for induction 
we shall first prove that A contains idempotent elements 
0ii, 022, * • • whose products in pairs are zero and such that en 
is in [en]. 

Let s=^2ïiZleu, where eaejj — 0, i^j, and en is in [en]. Let 
bn be any element of A in [enn] and let an = bn — sbn — bns+sbns. 
Then 0ttan = O = aw0tt-, and [an] = [bn] = [enn], and hence [an] [ett] 
= [O] = [et-,-] [an], (i=l, 2, • • • , n — 1). The sub-algebra B = (aw, 
an

2, • • • , a^) , of Ay contains an idempotent element enn in 
Unn], (Theorem 8), such that eWne« = 0 = et-*enn, i^n. Therefore 
A contains idempotent elements 0n, 022, 033, • * * whose products 
in pairs are zero and such that en is in [e,-*] of M. 

Now consider the non-zero elements a^ and bj\ of A, in [eij] 
and [e/i] of M, respectively. Let 0i/— 0ii#i/0/y, and #yi = e ^ i e i i . 
Then [ei3] [a3i] = [en] and hence 01^,1 = 011+ &, (k in K, with in­
dex a). Moreover, 0n€i,-a/i = 0i,-aji, and hence 0n(0ii + &) =0n + &, 
or enk = k. Similarly, ken = k. Let e3\ = a3\ — ajik+ajk2 — a,jk* 
+ • • • + ( - l ) « - 1 ayiJfe-"1. Then 

01/0/1 = (011 + *) - (* + k*) + • • • + ( ~ l ) - ^ ^ - 1 + k") 

= 011 + ka = « H . 

Similarly, 0/i0i/= 0//+&i, (&i in K). Hence from the definitions 
of dji, eij, and 0,1, it follows that ejjki = kien = ki. Therefore 
(e3'j+ki)2 = egj+2ki + k£ =(ejieij)2 = ejj + ki, and k? = —ki, from 
which &i2a= — &i = 0, since &i is nilpotent. Therefore, 0/101/= 0,7. 

Let 0t/ = 0ti0i/, (0a in [eti], 01/ in [eiy]). Then 6ty is in [e*,-]. 
From the definitions of ei3 and 0i/, and preceding relations, it 
follows that 

* If A is an algebra of matrices having only a finite number of non-zero 
elements in each matrix, and if the base elements (m), (k, h = l, 2, • • • ), of 
A are matrices whose elements are all zero except that in the &th row and hth 
column, which is unity, then the algebra M=(ea) equivalent to A, in which 
(i, j) have the same range as (k, h), will be called a simple matric algebra with 
the base elements €»•/. Thus €»•ƒ€# = €**,, €t /e^=0, h^j. 
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e%jeji = dhy and e^ekk = (^a^iy^/)(^M^i^i/c) = 0 , j ^ h. 

This completes the proof that A contains elements dj in 
classes [e*,-] of M, respectively, and such that the elements e^ 
constitute the base of a sub-algebra of A which is equivalent to 
M. 

4. Canonical Form of the Matrix R. Every linear associative 
algebra satisfying the postulates of this paper is equivalent* to a 
matric algebra, and hence an element of the algebra, and its 
matric representation, must satisfy the same minimum equa­
tion. Every finite matrix can be reduced to a rational canonical f 
form, but this is not true for matrices of infinite order. 

Let Ra = (fikj) correspond to a =]>^» £»•#*, where pkj =2*?*'T«^» 
and y ijk is the coefficient of Uk in the product UiUj. Since the 
number of terms Uk in any product UiUj is finite, Ra will have but 
a finite number of non-zero elements in any column. Let 
Wi=^2ikPkiUi) where k has an infinite range, but only a finite 
number of the p*» are not zero. Let Xn =^2iCiuil and Xn =£iCiWi, 
be any two corresponding finite linear functions of Ui and Wi, 
respectively, c» in S. Then Xn=^2ikCipkiUk = Xi2, and simi­
larly, Xi2=^ikCiPkiWk = ̂ ikhCiPkiPhkUh=^ihCiPhiUh==Xis, Xiz = 
^ihCiPhiWh=^ijCip<jfuj = Xu, etc., wherep%~l) is the element in 
the &th row and j t h column of (p&/)r. These relations may be 
written more briefly in the form 

ZlciPjiUj = Xiz, 
ij 

If the minimum equation of a is AM+£wXm-1 + • • • +£iX+£0 

= 0, then 

Pa + imPji + • • • + iipji = 0, (i j * j , i, j = 1, 2, 3, • • • ) , 
(m-1) (m-2) 

Pii + imPii + * * * + ilPii + ?0 = 0. 

Therefore 

Xim + imXim-l + ' ' ' + ^ l ^ l l + £o#ll = 0, 

* M. H. Ingraham, this Bulletin, vol. 32 (1926), p. 589. 
f L. E. Dickson, Modern Algebraic Theories, p. 89. 

#11 — 2~tCiUi) ^ 1 1 "~ zLiCiPHUi ~~ #12j X\2 ~ 

(1) v - V (r_1) -
'y •&• lr — / <CiPii Uj — #lr-j-l> 
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which proves the following theorem. 

THEOREM 12. If (p^) satisfies an equation of degree m, with 
rational coefficients, the number of linearly independent linear 
functions Xu, I n , • • • , Xu-_i, as determined in (1), is a^m. 

In what follows we shall write (1) in the form 

1 1 1 = #12, I l2 = #13, ' ' * , Xia-1 = Xia, 

(10 
X\a — JL^£H#H = 1̂ 11? * * ' > #1«J« 

A n y finite l inear expression ^»c»#» leads to a chain of the 
type of (10 . T h e maximal length of all such chains is a±^m. 

T H E O R E M 13. IfRa = (pkj) corresponds to the element a =^iCiUi 
of a rational linear associative algebra A , with the enumerable base 
(ui, U2, Us, • • • ) , then Ra may be reduced to a canonical form de­

fined by 

(2) Xjiai
 == L "̂»l> %U2) ' ' ' ) %Uocij) 

(i = 1, 2, • • • , p ^ ai;ji = 1, 2, 3, • • • ), 

iw which Xj.i, Xj.2, • • • , X^ a i are /&£ elements of the jith chain of 
length ai, each of which is linearly independent of all preceding 
chains of length ai, a2, • • • , a^i and the preceding elements of the 
jith chain of length ai. Moreover, a\ is the maximal length of all 
possible chains, and in general, ai is the maximal length of all 
chains of length less than a{-i which are linearly independent of 
all chains of length a\, a2, • • • , af_i. 

Proofs of this theorem for the finite case that have been 
given by L. E. Dickson {Modern Algebraic Theories, p. 90), or 
M. H. Ingraham (this Bulletin, vol. 39, p. 379), may be ex­
tended to the infinite case, provided we secure the leaders of 
successive chains as follows. 

The leader, Xn=^2iCiUi, of the first chain of length a± may 
be obtained from successive trials of the linear functions ^2iCiUi 
such that ^2i = n, (n = 1, 2, • • • , fa). The leaders of the suc­
ceeding chains of length ax may be obtained in the same way 
wi th ^ i = n, (n = fa, fa + 1, fa + 2, • • • , fa; fa, fa + 1, • • • , fa; 
etc.). To obtain the chains of length a2, as, etc., repeat the entire 
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process for a2, then for a3, etc. With (1') as a basis for induction 
we can prove that the &th chain of length ai can be expressed in 
the form 

( 3 ) Xkl =z%k2, ' ' • , Xkax-1 = ^ « i , Xkax ~ [%kl, Xk2, ' ' ' , fffca,]. 

Similarly, all chains of length a» can be reduced to forms of 
the type of (3). We can thus reduce (pkj) to the canonical form 
defined by (2), in which there are infinitely many partial trans­
formations, but not more than a\ different lengths to the chains. 

Each of the base elements ui, u2, w3, • • • , either is itself an 
element of (2), or else is a finite linear combination of such 
elements. For, in the process of determining the complete ca­
nonical transformation, any m which is finitely linearly inde­
pendent of all previously determined Xjk is taken as the leader 
of a new chain and is therefore itself an Xjk* Hence it is possible 
to determine uniquely each of the variables Ui in terms of the 
variables x&. 

The characteristic determinant of the matrix of any chain is 
divisible by that of any other chain of equal or lower order. 
Hence the minimum function of (/>*.,•) is identical with that of 
the chain of maximal length, and if (pkj) satisfies no finite equa­
tion it cannot be reduced to a rational canonical form with a 
chain of maximal length a. 

BELOIT COLLEGE 


