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AN INVERSE PROBLEM IN DIFFERENTIAL 
EQUATIONS* 

BY R. E. LANGER 

1. Introduction. The differential equation as a tool requires 
no introduction to either the mathematician or the applied 
scientist. Problems in endless variety are continually solved 
through this medium, the process almost invariably beginning 
with an epitome of the problem's essential characteristics in the 
form of a differential equation, which is thus determined ex­
plicitly both as to its structure and its coefficients, and pro­
ceeding thence to a deduction of the form or properties of a 
suitable solving function. 

The present note is devoted to a problem in which this cus­
tomary order of events is in large measure reversed. The formu­
lation of the problem yields in this case the structural form of a 
differential equation, and beyond this the existence of a solution 
which satisfies certain specified conditions. From these data the 
determination of the equation itself, that is, of its coefficient 
function, is required and constitutes the solution of the problem. 

2. The Physical Problem.^ In the investigation of shallow 
geological structures, and in the study of the electrical resistivity 
of the earth's crust at depths below the surface, an appropriate 
experimental procedure centers around the supply of a direct 
electric current through a small electrode to the surface of the 
earth. The electrical potentials which result at the surface of the 
earth are measurable at all distances from the electrode, and 
constitute entirely the immediately obtainable data. From them 
it is desired to compute, if possible, the conductivity of the 
earth below as a function of the depth. 

With the idealizations involved in regarding the conductivity 
as a differentiable point function depending upon the depth 
alone, and in taking the ground as a horizontally uniform in-

* Presented to the Society, April 14, 1933. 
t The problem and its formulation as outlined in this section are due to 

Professor L. B. Slichter of the Massachusetts Institute of Technology. A com­
plete and detailed discussion of it is given in a geophysical paper by L. B. 
Slichter, in Physics, vol. 4, Sept., 1933. 
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finite half-space, the problem may be formulated in the follow­
ing way. Let #, the depth, and p, the horizontal distance from 
the electrode, be taken as cylindrical coordinates with origin at 
the electrode. The electrical potential </>(p, x) may be shown then 
to satisfy the differential equation 

Vd2<t> 1 d<t> d2<f\ dcr(x) d<t> 
*{*) — + —— + — + ——•— « 0, 

L dp2 p dp dx2J dx dx 

in which <r(x) denotes the earth's conductivity. The substitution 

<j>(p, x) = U(p)u(x) 

separates the variables and resolves the equation into the com­
ponents 

U" + p-W + \2U = 0, 

{*«'}' - \2<JU = 0. 

The first of these is a Bessel equation, and, since the poten­
tial is to remain finite and vanish at infinity like the reciprocal 
of the distance, it must be concluded that U(p) = Jo(kp). 

The second component equation is of the Sturm-Liouville 
type, and since a(x) is positive, its solutions are of exponential 
form. Let U\{x, X) denote a solution which is positive, and, as a 
function of #, monotonically decreasing. The condition that 
d(f)/dx vanish everywhere at the surface except at the electrode 
leads by familiar reasoning to the formula 

— c r °° #i(ff, X) 
<t>(p, %) = I JVXp) sin \ad\, 

in which c is the current, and a the radius of the electrode. In 
terms of the abbreviation 

0(X) = - X«i(0, \)/u{ (0, X), 

the surface potentials are accordingly given by 

c r °° sin Xa 
^ °> * T ~ 7 ^ 12(X)——/o(Xp)JX, 

Z7T(7(0) J 0 Xfl 

a relation which by the Fourier-Bessel integral theorem may be 
inverted into the form 
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ƒ• 0 0 

*(p, 0)/0(Xp)prfp. 
o 

The formulas thus derived reveal the significant fact that the 
functions 0(X) and 4>(p, 0) are each uniquely determined by the 
other, and hence that the information embodied in the surface 
potential data is completely embraced in the function fi(X) when 
the latter is given for 0 <X < oo. I t is to be shown how from these 
data the conductivity function <r(x) may be computed. 

3. The Mathematical Problem. The considerations sketched 
in brief above may be looked upon as having crystallized the 
physical problem into the following somewhat idealized mathe­
matical one. 

On some interval 0 ^ x ^ h a certain function <r(x) is known to 
be analytic and positive. Beyond this it is known that the dif­
ferential equation 

d ( du) 
(1) — <<T(X) — > - \*<r(x)u = 0 

dx K dx) 

possesses a solution ux(xt X) which has the properties: 
(i) tha t for X on the range (0, oo ) and x on the interval (0, h) 

the relations 

(2) WiO, X) > 0, u[ (x, X) < 0, 

are satisfied; while 
(ii) at x = 0, the boundary condition 

(3) 0(X)«i' (0, X) + X«x(0, X) = 0 

is fulfilled, Ö(X) being a function which is compatible with the 
preceding hypothesis, and which is known and given for 
0 < X < o o . The function a(x) is to be computed. 

A process for the desired computation may be deduced as fol­
lows. Let the equation (1) be written in the form 

er'(tf) 
(la) u"(x, X) H u'(x, X) - \2u(x, X) = 0. 

a(x) 
I t is then readily seen to possess a fundamental set of solutions 
which are represented asymptotically (as to X) by a pair of ex­
pressions 



1933-1 DIFFERENTIAL EQUATIONS 817 

e^*S(x, ± X), 
in which 

S(x, X) = cr-1/2(o:) f l + £ «»(*)X-W1. 

Hence the solution which satisfies the condition (3), and in­
cludes a suitable factor independent of x, is representable by a 
formula 

0(X) - 1 
ui(x, X) ~ er**S(x, - X) H e^Six, X). 

V ' V ' 0(X) + 1 
Now unless the first term on the right of this expression is domi­
nant for all values of x on (0, h), the one or the other of the con­
ditions (2) will inevitably be violated when X is sufficiently 
large. I t follows, therefore, that 

(4) ui(x, X) ~ e~*xS(x, — X), 

a form which on substitution into the condition (3) is found to 
impose upon the function Q(X) a condition of compatibility to 
the effect that it admit of a representation 

00 

(5) Q ( X ) ~ 1 + 2 > „ X - » . 

Since by hypothesis the function Q(X) is given, the infinite set of 
constants cow, (n = l, 2, 3, • • • ), is to be considered as known. 

Let the function v(x, X) be defined by the formula 

(6) v(x, X) = — \ui(x, \)/u{ (x, X). 

I t is then found on the one hand in virtue of (la) to satisfy the 
Riccati equation 

*'(x) 
(7) v'(x, X) —v(x, X) - \v2(x, X) + X = 0, 

erf» 
and on the other hand, in virtue of (3), (4) and (5), to be asymp­
totically representable in a form 

00 

(8) v(x, X) ~ 1 + 23 ».(*)*—, 
n=l 

the coefficients vn(x) being analytic on (0, h), and satisfying the 
boundary relations 
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Vn(0) = C0n, 
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( » - 1,2,3, • • • ) • 

(8a) irl(x) ~ 1 + Z rn{x)\~n 

then follows, the coefficients being related to those of the series 
(8) by the recurrence formulas* 

n - l 

(10) rn(x) = — X ^ ( x K _ , ( x ) — vn(x), (n = 1, 2, 3, • • • )• 

If the equation (7) is now written in the form 

a'(x) v'(x, X) + X 
= — \v(x, X) H ; a{x) v(x, X) 

and the series (8) and (8a) are formally substituted in it, it is 
found as a result that 

a'(x) 
—— ~ — vi(x) + rx(x) 
<r(x) 

v oo r- n - l -1 

n=l L j=-l J 

The function cr(x), however, does not depend upon X. Hence it 
must be concluded that 

cr'(x) 

(11) - f f = - Vl(x) + nix), 
<r(x) 

and 
n - l 

(12) ]£»ƒ*»-ƒ + Vn = *>n+l — fn+1, (» = 1, 2, 3, • • • ) . 
J - l 

Of the equations (12) the first p in number when taken together 
constitute a linear algebraic system for the unknowns 
v{, vi, • • • , Vp . The system has a determinant of value unity 
and on solution yields the formulas 

* In this as well as in subsequent formulas an indicated sum is to be con­
sidered as zero if the upper index of summation is less than the lower one. 
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(13) » „ ' ( * ) -

1 0 

n 1 

r2 ri 

fp-2 rP-

?p—i fp-

• 

• 

' 

-3 " 

-2 * 

• - 0 

.. o 
• -0 

• • i 
. . fl 

v2 — r2 

vz — rz 

Vi — r4 

Vp -~~ fp 

Vp+i — fp+i 

, ( # - 1 , 2 , 3 , • ) . 

These formulas may be materially simplified as follows. The 
iteration of the formula (10) yields the relations 

n - l 
— rn = J^(vj — V!Vj-i)rn-.j + (vn — z>i»n-i), 

from which it may be seen that if to the last column in the de­
terminant (13) there is added the combination 

p—i 

— 2(» /+ i — ViVj) times the^'th column, 
* - i 

the effect is formally to replace the elements r2, rZi by 
zeros and in the case of the last row to replace — rp+i by 
Vp+\—ViVp- In precisely the same way it will be seen upon refer­
ence to the formulas (10), that if to the first column in (13) 
there is added the combination 

X)v/-i times the jth column, 
3=2 

the formal effect is to replace the elements n, r2, • • • , rp_2 by 
zeros, and in the case of the last row to replace rp-\ by — Vp-\. 
Similar reductions of the remaining columns may likewise be 
made, the formula (13) being reduced in consequence to the 
form 

1 0 • • • 0 v2 

0 1 • • • 0 vz 

0 VA 
Vpf{x) = 

0 

0 

— Vp-i 

0 

0 

Vp-2 

1 Vp 

vi 2vp+i — ViVp 
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If in this, finally, there is added to the last row the combination 

p-i 

^Vp-j times the j th row, 

the determinant disintegrates into the formulas 

(14) 
Vn M = «n(»), (» = 2, 3, 4, • • • ), 

in which 
/iOi> »a) - 2z>2(#) - Vi2(x), 

^ ' n-2 
^n(t>) = 2vn+1(x) + J^Vj+1(x)vn-j(x)t 

3 - 1 

Let the functions ƒ2, ƒ3, • • •, be defined successively by the 
recurrence formula 

(16) ƒ»(»!, »2, • • • , M-l) = Z)**W" 
t=»l ##»• 

Then it is readily seen that repeated differentiation of the 
first of formulas (14), and substitution from the remaining 
formulas, gives the expressions 

dnv-[ (x) 
(17) — = fn(vi, v2, - • • , vn+i), (n = 1, 2, 3, • • • ), 

dxn 

for the derivatives of the function Vi(x). 
For general values of x the functions involved in the right 

member of (17) are not known. They are given, however, for 
x — 0 by (9), whence 

dnvx~\ 
(18) —— = /n(coi, cog, • • • , «n+i), {n = 1, 2, 3, • • • ) . 

With these values available the MacLaurin expansion of the 
function V\{x) is computable, and since the first of the formulas 
(10) gives to (11) the form 

<r'(*) 
— — = - 2»i(s), 
<r(x) 

the desired computation of the function <r(x) has been accom­
plished. 
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