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ON NATURAL FAMILIES OF CURVES 

BY C. H. ROWE 

1. Introduction. A natural family of curves in a Riemannian 
space VN of N dimensions is a family which consists of the 
oo 2N~2 extremals of an integral /yds, where /x is a function of 
position and ds is the element of length. If a system of oo M curves 
is given in VN, where M^2N—2, there does not in general exist 
a natural family to which all these curves belong ; and the present 
paper is concerned with the problem of finding conditions for the 
existence of such a family. This problem is equivalent, as will 
be seen, to that of finding conditions for the possibility of repre­
senting VN conformally on a second Riemannian space so that 
the curves of the second space that correspond to the curves of 
the given system are geodesies. 

In the case where M = 2N—2 and N>2, a condition is given 
by the extensions to Riemannian space of the so-called* theorem 
of Thompson and Tait and the converse theorem of Kasner. 
According to these theorems, a system of oo 2N~2 curves in VN 
(N>2) is a natural family if and only if the oo N~l curves of the 
system that cut an arbitrary VN-\ normally are the orthogonal 
trajectories of a family of a single infinity of VN-IS, or in other 
words, form a normal congruence.! This result is applicable only 
when the given system contains oo2^-2 curves; and it is not 
valid for N — 2, since the condition is satisfied by an arbitrary 
system of oo 2 curves on a surface. The result that we shall ob­
tain in what follows is not subject to these limitations, and it 
yields immediately the theorem of Thompson and Tait in the 
cases where this is applicable. 

Our argument will be mainly synthetic in form ; and we shall 
make no at tempt at a rigorous discussion of the minimum as­
sumptions under which our results hold, contenting ourselves 
with supposing that the functions that we introduce, explicitly 

* J. A. Schouten (Nieuw Archief, (2), vol. 15 (1928), p. 97) points out that 
this theorem was first given by Lipschitz. 

t See E. Kasner, Transactions of this Society, vol. 11 (1910), p. 121, J. A. 
Schouten, loc. cit., and W. Blaschke, Nieuw Archief, (2), vol. 15 (1928), p. 202. 
The methods of the present paper are similar to those used by Blaschke. 
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or implicitly, have whatever degree of regularity is required in 
order to justify our reasoning, and restricting ourselves when­
ever it is necessary to a sufficiently limited region of VN-

2. Conditions f or Belonging to a Natural Family. When we con­
sider a system (S) of oc M curves, we shall suppose that at least 
one curve of (5) passes through each point of VN, thus excluding 
the cases in which all the curves of (5) lie in a sub-space; and 
we shall suppose that at most one curve of (S) passes through 
a given point in a given direction. We thus have 

N - 1 g M ^ 2N - 2. 

We shall further assume (when M>N—1) that, if two curves of 
(5) passing through a point are given, it is possible for a variable 
curve of (S) which passes through this point to move continu­
ously from coincidence with one of these curves into coincidence 
with the other. When M = N—1, the system of curves is called 
a congruence; and we shall then assume that a unique curve of 
(S) passes through each point. When M = 2N—2, we shall sup­
pose that a unique curve of (S) passes through each point in 
each direction. 

Suppose for the present that N>2. By a surface of the system 
(S) we shall mean a surface (or V2) that can be generated by a 
variable curve of (S) which moves with one degree of freedom ; 
and we shall call the 00 1 positions of the variable curve the 
generators of the surface.* If the initial and final positions of the 
generating curve coincide, we shall call the surface a tube. We 
shall have to consider the curves on a surface of (S) that cut the 
generators orthogonally, and we shall call these the orthogonal 
curves of the surface. 

When a surface of (S) is a tube, it may happen that the orthog­
onal curve that starts from a point P returns to P after en­
circling the tube, and is thus a closed curve; but in general this 
will not happen. Instead, if an orthogonal curve is prolonged in­
definitely in either sense, it will encircle the tube continually, 
never intersecting itself, in a manner not unlike that in which 
a circular helix encircles the circular cylinder on which it lies. 

* If a surface can be generated in more than one way by curves of (S), it 
will always be clear that a particular mode of generation is being considered. 
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The theorem that we wish to prove may now be stated as 
follows. 

In order that there should exist a natural family in VN to which 
the curves of a given system belong, it is necessary and sufficient 
that, whenever one orthogonal curve on a tube of the system is 
closed, all the remaining orthogonal curves on that tube should also 
be closed. 

This theorem holds without essential change when N=2, al­
though it has been expressed in language appropriate to three 
or more dimensions. In the case where M=N=2, the theorem 
may be stated, perhaps more suitably, by saying that a system 
of oo2 curves on a surface is a natural family if, and only if, the 
oo 1 curves of the system that cut an arbitrary closed curve 
normally are the orthogonal trajectories of a family of oo1 

closed curves. 
The case where N=2> M—\ may be conveniently taken with 

the case where, for N>2, the system is a normal congruence. 
In the former case we may regard the condition of our theorem 
as being fulfilled. In the latter case it is always fulfilled, since 
every tube of a normal congruence has closed orthogonal 
curves. In each of these cases, as we shall see, it is possible to 
find a natural family containing the given system, but, in con­
trast to the remaining cases, this family is not unique. 

That our theorem yields the theorem of Thompson and Tait 
follows from the fact that all the tubes belonging to a congruence 
have closed orthogonal curves when the congruence is normal, 
and in no other cases.* Suppose that a system (S) of oo 2N~2 

curves satisfies our condition, and consider the congruence 
formed by the curves of (5) that cut a given VN-I normally. On 
any tube of this congruence, one, and therefore every, orthogonal 
curve is closed; and consequently the congruence is normal. 
Conversely, supposing that the system (S) satisfies the con-

* Consider a congruence (C), and suppose that every orthogonal curve on 
every tube of (C) is closed. On a fixed curve Co of (C) take a fixed point Po, 
and let C be a variable curve of (C). On any surface of (C) of which Co and C 
are generators draw the orthogonal curve that passes through Po, and let it 
meet C in P . The point P does not depend on our choice of this surface, for the 
tube formed by two such surfaces has closed orthogonal curves. As C varies 
in (C), P describes a VN-I which clearly cuts all the curves of (C) normally. If 
we vary P 0 along Co, we get a family of a single infinity of VJv-i's which cut 
the curves of (C) normally. 
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dition of Thompson and Tait, consider a tube of (S) on which 
one orthogonal curve is closed. If we draw a VN-I through this 
curve cutting the generators of the tube normally, the tube 
belongs to the congruence formed by the curves of (5) that cut 
this VN-I normally; and since this congruence is normal, all the 
orthogonal curves of the tube are closed. 

3. Proof of Necessity. The necessity of the condition of our 
theorem is easily proved. Let the metric of VN be defined in any 
system of coordinates xl by the formula 

ds2 = gijdx{dxJ', 

and consider the natural family (S) formed by the extremals of 
f yds, where ju is a function of the variables x*f which we shall 
suppose not to vanish or become infinite in the region under con­
sideration. Consider a second Riemannian space VN > in which 
the element of length dsf is given by 

ds'2 = fx2gijdx{dx3' = fji2ds2. 

The correspondence between these two spaces in which corre­
sponding points have the same coordinates is conformai. I t is 
therefore sufficient to prove that the system (5') in VN that 
corresponds to (S) satisfies the condition of our theorem. Now 
the curves of (5'), being extremals of fds', are geodesies of VN'\ 
and the presence of one closed orthogonal curve on a tube 
generated by geodesies implies that all the orthogonal curves 
of this tube are closed. This is an immediate consequence of 
the theorem of Gauss that two orthogonal trajectories of a 
system of oo 1 geodesies on a surface intercept equal arcs on all 
these geodesies. 

4. A Lemma. Before considering the sufficiency of our con­
dition, we must establish a preliminary result. We shall show 
that, if (S) is a system of curves which satisfies our condition, 
and if P 0 and P are two given points, it is possible to find a sur­
face of (5) which has an orthogonal curve passing through 
P 0 and P , except in the case where (5) is a normal congruence 
and in the case where N = 2, M — 1. 

Since this result is immediate when iV = 2, M = 2, we shall 
suppose that N>2. Consider first the case where (5) is a con­
gruence which is not normal. Let So and S be the curves of (5) 
that pass through Po and P respectively, and let 2 be any sur-
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face of (S) of which these curves are generators. Let the or­
thogonal curve on 2 that passes through P 0 meet S in a point 
Qy which we may suppose not to coincide with P . We can find 
a tube of (5) which contains the curve S as a generator, and 
which has no closed orthogonal curves; for if not, the orthogonal 
curves of every tube of which S is a generator would be closed, 
and (5) would therefore be a normal congruence. Let T be such 
a tube, and let the orthogonal curve PoQ that we are consider­
ing on 2 be prolonged beyond the point Q by allowing it to en­
circle the tube T a certain number of times, until it cuts S in a 
point Q' which lies on the side of P remote from Q. This is 
clearly possible, if we allow the curve to encircle T a sufficient 
number of times in the right sense; for if not, the curve would 
cut S in an unending sequence of points lying between P and Q. 
These points would have a limiting point, and, for reasons of 
continuity, the orthogonal curve of T through this limiting 
point would be closed. Supposing that P lies between Q and Q', 
we shall allow the tube T to vary continuously, always passing 
through 5, and to contract until it reduces to the curve 5. While 
this happens, the point Q' moves continuously along 5, and 
ultimately coincides with Q. At some stage in this process Q' 
must pass through P\ and at this stage we have a tube which 
has an orthogonal curve joining Q to P . The surface made up 
of the portion of 2 between the curves So and S and of the tube 
T has thus an orthogonal curve PoQP which passes through P 0 

and P , as is required. 
Suppose now that (S) contains <*>M curves, where M>N— 1. 

I t will easily be seen that we can form with curves of (5) a con­
gruence (C) which is not normal, and which, like (5), satisfies the 
condition of our theorem. We can then find a surface belonging 
to (C), and therefore to (5), which has an orthogonal curve 
joining the two given points. 

If, however, the system (S) is a normal congruence, or if 
iV = 2, M= 1, it will not be possible to find a surface of (S) satis­
fying our requirement, unless one of the VN-I& that cut the 
curves of (S) normally passes through the two given points. 

5. Proof of Sufficiency. We shall suppose that on any tube of a 
system (S) either all or none of the orthogonal curves are closed, 
and we shall show that we can define a function JJL of position 
throughout VN such that the curves of (5) belong to the 
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natural family formed by the extremals of J fids. We shall state 
the proof for N>2, without troubling to indicate the merely 
verbal changes that would be desirable if N were equal to 2. 

We shall suppose firstly that (S) is not a normal congruence 
or a system of oo 1 curves on a surface. Take a fixed point Po, 
and choose an arbitrary positive value /x(P0) for the function 
ix at Po. Let P be any point, and find a surface 2 of (5) which 
has an orthogonal curve joining P 0 to P . Consider on S a 
second orthogonal curve, which we shall allow to tend to co­
incide with the first. Let the lengths of the arcs that these curves 
intercept on the generators of 2 that pass through P 0 and P be 
5so and ôs. We may assume that, as the second orthogonal curve 
tends to the first, the ratio ôs0/ôs tends to a limit; and we shall 
show that this limit depends only on the point P (the point Po 
being fixed), and not on our choice of the surface 2 . We must 
thus show that this limit is unaltered if we replace 2 by another 
surface 2 ' which also has an orthogonal curve joining Po to P . 
If (5) is a congruence, the surfaces 2 and 2 ' , having in common 
the curves of the congruence that pass through P 0 and P , form 
a tube; and since the orthogonal curves of this tube are closed, 
the truth of our assertion is clear. In the general case (M>N— 1) 
we shall construct a tube of which 2 and 2 ' form part. We con­
nect the generators of 2 and 2 ' that pass through P 0 by a sur­
face of (5) whose generators all pass through Po; and, similarly, 
we connect the generators of 2 and 2 ' that pass through P by 
a surface of (5) whose generators all pass through P . These two 
new surfaces, together with 2 and 2 ' , form a tube of (S) on 
which one, and therefore every, orthogonal curve is closed. Let 
the second orthogonal curve that we have taken on 2 be con­
tinued around this tube until it closes. We thus get a second 
orthogonal curve on 2 ' . If ôsj and ôs' are the lengths of the arcs 
that the two orthogonal curves on 2 ' intercept on the generators 
of 2 ' through P 0 and P , we have to show that 

ÔSO . ÔS0 

lim = lim • 
Ôs' ôs 

We notice that , if a surface is generated by curves passing 
through a fixed point, the arcs intercepted on two of these curves 
between the fixed point and an orthogonal trajectory of the 
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curves have a ratio which tends to unity as the lengths of the 
arcs tend to zero. We thus have the equations 

ôs£ . ds' 
lim = 1, lim = 1, 

ds0 as 
from which the required conclusion follows at once. 

Since lim ôs0/ôs depends only on the point P , we may define 
the value jn(P) of the function \x at any point P by the equation 

ds0 

fi(P) = n(P0) lim ; 
ôs 

which may also be written in the equivalent form 

fi(P)ds = n(Po)dso. 

It is clear from this that, if we take any surface of (S), and con­
sider the arcs intercepted on two of its generators by two of its 
orthogonal curves, the values of J yds arising from these two 
arcs are equal. We shall suppose that the function JJL does not 
vanish or become infinite in the region that we are considering, 
and we shall introduce, as we did in §3, a second Riemannian 
space VN in conformai correspondence with VN, the element of 
length ds' in VN' being given by dsf=/jids. The system (Sf) in 
VN that corresponds to (5) has the property that the arcs inter­
cepted on the generators of a surface of (S') by two of its orthog­
onal curves are all equal. In virtue of the converse of the theo­
rem of Gauss that we quoted in §3, every curve of (Sf) is there­
fore a geodesic of any surface of (Sf) of which it is a generator. 
This implies that the first curvature-vector of a curve of (S') 
either vanishes or is normal to every surface of (5') of which the 
curve is a generator. The latter alternative is clearly impossible, 
and therefore every curve of (S') is a geodesic of VN . It follows 
that the curves of (S) belong to the natural family formed by 
the extremals of f fids. 

Since we have defined the function fx uniquely except for a 
constant factor, our procedure leads to a unique natural family. 
I t will be seen that this is in fact the only natural family to 
which all the curves of (S) belong. 

I t remains to consider the case where (S) is a normal con­
gruence, and the case where N = 2, M=l. In these cases the 
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condition of our theorem is always verified, as we have al­
ready remarked, and we shall show that we can find a natural 
family which contains the given curves; but this family is no 
longer unique. If we try to use the same method as before, we 
find that we can define the value of n only at points of the normal 
VN-I that passes through P0. Instead, therefore, we take an 
arbitrary curve which meets each normal VN-I once, and we 
define the function /x arbitrarily along this curve. We then use 
our former method to define the value of /x at any point P in 
terms of the assigned value of JJL at the point where the normal 
VN-I that passes through P meets this curve. Reasoning as be­
fore, we can then prove that the curves of (S) are extremals of 
f lids. We can thus find a natural family depending on an arbi­
trary function of one variable which contains the curves of the 
given system.* 

We may remark, in conclusion, that a modification of the 
methods that we have used will allow us to consider a more 
general problem. If we are given a system (S) of curves in VN 
and a transversality relation, we may ask whether there is a 
first order problem of the calculus of variations such that the 
family of its oo2^-2 extremals contains the curves of (5), and 
such that its transversality relation coincides with the given one. 
If we replace the relation of orthogonality by the given trans­
versality relation, we are led to consider on any surface of (5) 
the curves that are cut transversally by the generators, and we 
may call these the transversal curves of the surface. I t is then 
possible to generalize the theorem of Kneser on transversals 
and its conversef in the same way as our previous result gener-

* I t is perhaps worth noticing that , in the cases at present under considera­
tion, a natural family containing the given system (5) is uniquely determined 
if we are given one curve T which belongs to the natural family, but not to (S), 
and which cuts each normal VN-I once, but not normally. We recall the fact 
that the first curvature-vector of an extremal of ftxds is the component normal 
to the curve of the gradient of log ju. This gradient is determined at each point 
of r , because we know its components normal to each of two distinct directions, 
namely, that of T and that of the curve of (S) through the point. The value of 
/* is therefore determined along T except for a constant factor, and consequently 
the natural family is determined uniquely. I t will be seen that , when N>2, 
the curve T may not be given arbitrarily. 

t See J. Douglas, Transactions of this Society, vol. 29 (1927), p. 401, and 
W. Blaschke, loc. cit, 
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alizés the theorem of Thompson and Tait. We can prove, in 
fact, that a condition for an affirmative answer to our question 
is that, on any tube of (5), either all or none of the transversal 
curves should be closed. 

TRINITY COLLEGE, 
DUBLIN, IRELAND 

ON T H E CONDITION THAT TWO ZEHFUSS 
MATRICES BE EQUAL 

BY D. E. RUTHERFORD 

1. Introduction. In a recent paper* Williamson has considered 
matrices whose sih compounds are equal. The present paper 
considers the somewhat analogous problem of finding the condi­
tions that two Zehfuss matrices be equal. 

Suppose that R is a matrix of n\ rows and m\ columns whose 
i/th element is r*/, and that P is another matrix of n2 rows and 
m2 columns. Now, if the matrix Q of n\n% rows and mim2 columns 
can be partitioned into submatrices each of n2 rows and m2 

columns such that the ijth submatrix is r^P, then Q is a Zehfuss 
matrix^ or the direct product matrixJ of R and P. We shall write 

Q = R(P) = (P)R. 

In general, however, R(P)^{P)R. 
It is the purpose of this paper to find out under what condi­

tions the matrix equation 

A{B) = C{D) 

is true. Tha t is, we shall find the most general form of the mat­
rices A, B, C, D when the above equation holds. 

2. The Simplest Case. We shall begin by considering the sim­
plest case, where A, B, C, D are row vectors, where A and D 
are of order wi, where B and C are of order m2, and where 

(m1} m2) = 1 ; 

that is to say, wi and m2 are prime to one another. Suppose that 

* J. Williamson, this Bulletin, vol. 39 (1933), p. 109. 
t G. Zehfuss, Zeitschrift für Mathematik und Physik, vol. 3 (1858), p. 298. 
Î L. E. Dickson, Algebras and Their Arithmetics, p. 119. 


