ON CERTAIN DYNAMICAL SYSTEMS WITH POINTS OF PEANO ## BY MARIE CHARPENTIER* 1. Introduction. Recently I have studied differential systems of the form $$\frac{dx_i}{dt} = X_i(x_j), \qquad (i, j = 1, \dots, n),$$ in which the point (x_i) is restricted to lie in a rectangular domain of x_i space while the X_i are merely taken to be continuous.† As is well known, there may exist in this case more than one integral curve through certain "points of Peano." Such differential systems have an obvious physical interest, for they represent the simplest possible extension of the ordinary dynamical type, in which a certain indeterminacy of motion may exist; in the dynamical case the manifold M is closed instead of rectangular. A first fundamental question in this direction is as to whether there exists an analog of the central motions as defined by Birkhoff.‡ In the present paper, I have commenced with the case of most interest, in which there is uniqueness for decreasing t.§ An analogous set of central motions is defined in this case and these are determined for the sphere (n=2). 2. Central Motions with a Condition of Uniqueness for Decreasing t. (a). Consider a point P at an instant t_0 on the manifold M. Let us define for any $\epsilon > 0$, an open molecule σ of diam- ^{*} International Research Fellow. [†] Bulletin des Sciences Mathématiques, vol. 54 (1930), p. 203. Comptes Rendus, vol. 191 (1930), p. 912; and vol. 192 (1931), p. 913. Bulletin International de l'Académie Polonaise, 1931, p. 191, and Mathematica (Cluj), vol. 5, pp. 65–99. [‡] See, in particular, *Dynamical Systems*, Colloquium Publications of this Society, vol. 9, p. 189; and G. D. Birkhoff and P. A. Smith, Journal de Mathématiques, 1928, p. 345. [§] That is, if we consider the curves of motion passing through P for $t=t_0$, they coincide for $t < t_0$. For the study of this case in the plane see p. 87 of my Mathematica paper. eter ϵ , containing P. Each point of the molecule is supposed to move in all admissible directions as time increases, but, of course, these points will always fill a continuum. In what follows we shall use the following fundamental property of the motions. Let $(P)_t$ be the set of points to any of which P may have moved after a time t, $(P)_t$ being by hypothesis a single point for t < 0; for any point P, any $t_0 > 0$, and any $\epsilon > 0$, there is a $\delta > 0$ such that, if Q is within a distance δ of P, then any point of $(Q)_t$ is within ϵ of some point of $(P)_t$ for $|t| \le t_0$. It follows that any set $(P)_t$ is closed. (b). Consider now the above defined molecule σ . If P is not an equilibrium point and if ϵ is small enough, σ moves outside its first position. When it is possible to choose ϵ small enough so that σ never overlaps its first position again, we shall call P a wandering point. Let the set of all wandering points be called W. If σ overlaps itself when t has increased from t_0 to $t_0+\tau$, it has to do so when t has decreased from t_0 to $t_0-\tau$, and conversely. Thus we arrive at the same set of points W if we let the time decrease instead of increase in the above definition. If P is a wandering point, so are all the points of σ , since σ is open; thus W is open, and the set $M_1 = M - W$ is closed. For any point of M_1 , any corresponding molecule σ will overlap itself after any period of time as t increases (and decreases), no matter how small the molecule may be. If a given point P is in M_1 , then so is all of the motion through P for decreasing t. For consider any point $(P)_t$, t < 0, and any molecule σ about $(P)_t$. Take a molecule σ' about P so small that $(\sigma')_t$ lies wholly in σ . Then σ' , hence $(\sigma')_t$ and therefore σ , intersects itself after any period of time, and thus $(P)_t$ is in M_1 . The same reasoning shows that any unique curve of motion lies wholly in W or in M_1 . Similarly we define M_2 as the set of non-wandering points with respect to M_1 , M_3 as the set of non-wandering points with respect to M_2 and so forth. Thus we obtain an ordered set of closed sets M, M_1 , M_2 , \cdots , M_{ω} , $M_{\omega+1}$, \cdots , M_r . We shall call the limiting set, M_r , the set of *central motions* in analogy with the ordinary definition. (c). By the customary argument it is possible to prove the following property. When the time increases and decreases every wandering point approaches M_1 uniformly. Furthermore if P is a point of M_1 , it will either stay indefinitely in M_1 , or leave M_1 . In the latter case it becomes a wandering point and must nevertheless approach M_1 later. By the usual argument we obtain the following result. The probability that an arc of a curve of motion lies inside of an arbitrary neighborhood of M_1 approaches unity uniformly as the interval of time for such an arc increases indefinitely. (d). Let us call, as usual, the limiting points of a curve of motion for increasing t, ω points, and its limiting points for decreasing t, α points. The $\alpha(\omega)$ limit points A of a motion C are formed of complete motions. It is sufficient to show, for a fixed $t_0 > 0$, that if P is a point of A, then there is a point P' of $(P)_{t_0}$ in A; the property is evident for $t_0 < 0$. If Q is a point of C, then there are points $Q_{\tau_1}, Q_{\tau_2}, \cdots$ of C lying in $(Q)_{\tau_1}, (Q)_{\tau_2}, \cdots$ respectively and approaching P. The points $Q_{\tau_1+t_0}, Q_{\tau_2+t_0}, \cdots$ of C must then approach the point set $(P)_{t_0}$. They have a limit point P' in the set; thus P' is a point of A in $(P)_{t_0}$, as required. The limit points of any set of complete motions consist of complete motions. The proof is exactly as above except that the points Q_{τ_1} , Q_{τ_2} , \cdots may lie on different motions. Instead of the sequence M_1 , M_2 , M_3 , \cdots above, used to define the central motions M_r , we can use another set as follows. Let us call N_1 the set formed by the α limit points of all motions on M together with their geometrical limit points. It is easy to see that $M_1 \supset N_1$. Similarly we define N_2 on N_1 , etc. The limiting set N_s consists of those motions which belong to their own α limit points, say E, and the geometrical limiting points of E. (e). Evidently $N_s \subset M_r$; are they identical?* The set of central points contained in a small molecule σ must overlap itself in M_r for $t_0 < 0$ however large t_0 and however small σ may be. Hence there exists in σ a pair of central points P_1 and Q_1 , positions reached by the same point after a certain period of time. We shall assume that Q_1 precedes P_1 . Choose about P_1 a neighborhood σ_1 so small that both σ_1 and $(\sigma_1)_{t_1}$, the corresponding neighborhood of Q_1 , together with ^{*} See G. D. Birkhoff and P. A. Smith, loc. cit., p. 354. their limit points shall be contained in σ . There exist in σ_1 two central points P_2 and Q_2 about which we can choose two molecules σ_2 and $(\sigma_2)_{t_2}$ completely interior to σ_1 , Q_2 preceding P_2 . Continue in this manner. We can choose the molecules σ_k such that - (a) the diameter of σ_k converges to zero as $k \to \infty$, and - (b) the periods of time t_k increase indefinitely. Then the limiting point L of the molecules is interior to every molecule σ_k , and thus the curve of motion C through L for decreasing t has the following property (C belongs to M_r). For every k, (L)_{t_k} has a point in σ_{k-1} ; thus L is an α limit point of C Moreover, as has been shown above, through L exists a complete curve of motion lying in the set of α limit points of C and hence lying in M_r and its own set of α limit points. Therefore we may make the following statement. The complete motions lying in their own set of α limit points are everywhere dense on M_{τ} . It readily follows that through every central point passes a complete motion lying wholly in M_{τ} . (f). It must be noticed that if a motion C has a common point with its α limit points and its ω limit points it does not necessarily belong to either one. However a motion lying in its set of α limit points and having a common point with its set of ω limit points is also part of the latter, and is *pseudo-recurrent* according to the usual definition. The pseudo-recurrent motions and the recurrent motions, these being defined in the customary way, belong of course to M_r . Furthermore, in the present case, it is easy to see that M_1 and N_1 are not equivalent. Take on the sphere a simple closed curve* C through an equilibrium point P, and let Q be a unique point of Peano on C. Let us assume that the motions through Q have as ω limit points a periodic motion C_1 , for the motions lying on the right-hand side, P of course for C, and another periodic motion C_2 for the motions lying on the left-hand side. The point P is the only equilibrium point between C_1 and C_2 . It is easy to see that PQ belongs to M_1 , but not to N_1 . 3. Central Motions on the Sphere. It is well known that if on ^{*} This example was pointed out by H. Whitney; he also proved independently that M_r consists of complete motions. the sphere a curve of motion C possesses the two following properties: - (1) C never crosses itself; - (2) on C there is a point P such that C for indefinitely increasing (or decreasing) t has always points arbitrarily near P; then through P passes a periodic motion. It immediately follows from a theorem in §2 that such periodic points P are everywhere dense on the central motions, provided that we consider only the part of M_r which is not the set of equilibrium points. Thus we may make the following statement. On a sphere M, the central motions M_r consist of the equilibrium points, the periodic motions, and their limit points. These limit points form boundaries of regions; therefore the central motions which are not periodic terminate in equilibrium points or sets of equilibrium points and are, then, nowhere dense on M_r . A periodic motion through a point P is the only central motion issuing from P since two periodic motions cannot intersect, and any other central motion, being terminated in equilibrium points for decreasing t, has no common points with a periodic motion. Moreover if P is a central, non-periodic point, there exist periodic points converging to P not lying on H(P) (the set of curves of motion through P); thus there exist at most two different sequences of periodic motions converging to P, and thus to at most two different central motions through P. Evidently the recurrent and pseudo-recurrent motions are the equilibrium points and the periodic motions. 4. Possibility of Choice. Consider a point P and the set of the ω limit points of all the curves of motions through P, say $\Omega_{\omega}(P)$. If P_1 is a position reached by P at some later time, we have $$\Omega_{\omega}(P) \supset \Omega_{\omega}(P_1)$$. The number of possible choices of P cannot increase; in particular, if P and P_1 are on the same periodic motion, $$\Omega_{\omega}(P) = \Omega_{\omega}(P_1)$$. Consider now a point P on a central motion C on a sphere and suppose that, at P, the curve of motion is not unique. Let C_1 be another curve of motion through P. Consider the arc P_1Q_1 of $(P)_{\epsilon}$, where P_1 lies on C and Q_1 on C_1 . Since a motion passing through P_1Q_1 and not passing through P_1 or Q_1 cannot be a central motion, we define thus a small region PP_1Q_1 characteristic of the central motion C, or possibly of the two central motions C and C_1 . Therefore we have the following result. The central motions, except possibly the equilibrium points, from which may issue at least one other motion form at most a denumerable set. If there exist two periodic motions C_1 and C_2 (or any two closed curves made up of motions of M) such that the region r bounded by C_1 and C_2 does not contain any equilibrium points in its interior, it is necessary, in order that some point P of r can choose to approach in the future either C_1 or C_2 , that there be a unique periodic motion c in r. If P is interior to r, c cannot coincide with C_1 or C_2 . Moreover, P, as long as it stays on c, will be able to go to any point of rat almost any time, more precisely at a time T, $t-\tau \le T \le t+\tau$, t being arbitrarily chosen and τ the period on c. The above condition is also sufficient if c contains a point of Peano. To prove the first statement, take a point P_0 of r having two curves c_1 and c_2 asymptotic to C_1 and C_2 as t increases. Of course, the motion c through P_0 for decreasing t cannot be asymptotic to either C_1 or C_2 . Let us draw two closed bands B_1 and B_2 of width ϵ including C_1 and C_2 . Let P_1 and P_2 be the first points on c_1 and c_2 respectively in common with B_1 and B_2 . By cutting the region $R (R = r - (B_1 + B_2) + \text{boundary})$ by the arc $P_1 P_0 P_2$, we obtain a simply connected region which does not contain any equilibrium points; therefore c cannot be interior to this region. If we choose ϵ suitably, c has no common points with B_1 and B_2 and thus it has a common point Q with $P_1P_0P_2$. Hence following c further, we run into P_0 again, and obtain thereby a periodic motion. By the same argument, it is seen that through every point of r passes a motion issuing from P_0 ; thus c is the only periodic motion in r. The motion c cuts r into two regions r_1 and r_2 . Every point on c can pass to any point of r, while a point interior to, say, r_1 , must be in B_1 after a certain interval of time, and can never reach a point of r_2 . The sufficiency of the condition is not hard to prove. HARVARD UNIVERSITY