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ON CERTAIN DYNAMICAL SYSTEMS WITH 
POINTS OF PEANO 

BY MARIE CHARPENTIER* 

1. Introduction. Recently I have studied differential systems 
of the form 

dxi 
— = Xi(xj), (i, j = 1, • • • , «), 
at 

in which the point (Xi) is restricted to lie in a rectangular domain 
of Xi space while the Xi are merely taken to be continuous.! As 
is well known, there may exist in this case more than one in­
tegral curve through certain "points of Peano." 

Such differential systems have an obvious physical interest, 
for they represent the simplest possible extension of the ordi­
nary dynamical type, in which a certain indeterminacy of mo­
tion may exist; in the dynamical case the manifold M is closed 
instead of rectangular. A first fundamental question in this 
direction is as to whether there exists an analog of the central 
motions as defined by Birkhoff.J 

In the present paper, I have commenced with the case of most 
interest, in which there is uniqueness for decreasing /.§ An 
analogous set of central motions is defined in this case and these 
are determined for the sphere (n = 2). 

2. Central Motions with a Condition of Uniqueness for De­
creasing t. (a). Consider a point P at an instant to on the mani­
fold M. Let us define for any e>0 , an open molecule a of diam-

* International Research Fellow. 
t Bulletin des Sciences Mathématiques, vol. 54 (1930), p. 203. Comptes 

Rendus, vol. 191 (1930), p. 912; and vol. 192 (1931), p. 913. Bulletin Inter­
national de l'Académie Polonaise, 1931, p. 191, and Mathematica (Cluj), vol. 
5, pp. 65-99. 

t See, in particular, Dynamical Systems, Colloquium Publications of this 
Society, vol. 9, p. 189; and G. D. Birkhoff and P. A. Smith, Journal de Mathé­
matiques, 1928, p. 345. 

§ That is, if we consider the curves of motion passing through P for t — to, 
they coincide for t<tQ. For the study of this case in the plane see p. 87 of my 
Mathematica paper. 
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eter e, containing P . Each point of the molecule is supposed to 
move in all admissible directions as time increases, but, of 
course, these points will always fill a continuum. 

In what follows we shall use the following fundamental 
property of the motions. Let (P) t be the set of points to any of 
which P may have moved after a time /, (P)t being by hy­
pothesis a single point for t<0\ for any point P , any / 0 > 0 , and 
any e > 0 , there is a ô > 0 such that, if Q is within a distance ô of 
P , then any point of (Q)t is within e of some point of (P) f for 
[/1 S to. It follows that any set (P)* is closed. 

(b). Consider now the above defined molecule a. If P is not an 
equilibrium point and if e is small enough, a moves outside its 
first position. 

When it is possible to choose e small enough so that a never 
overlaps its first position again, we shall call P a wandering 
point. Let the set of all wandering points be called W. If a 
overlaps itself when t has increased from to to to+r, it has to do 
so when / has decreased from to to to — r, and conversely. 

Thus we arrive at the same set of points W if we let the time 
decrease instead of increase in the above definition. If P is a 
wandering point, so are all the points of a*, since a is open; thus 
W is open, and the set Mi = M— W is closed. For any point of 
Mi, any corresponding molecule a will overlap itself after any 
period of time as / increases (and decreases), no matter how 
small the molecule may be. 

If a given point P is in Mi, then so is all of the motion through P 
for decreasing t. 

For consider any point (P)«, / < 0 , and any molecule a about 
(P)t. Take a molecule cr' about P so small that {af)t lies wholly 
in a. Then a', hence (<r')« and therefore cr, intersects itself after 
any period of time, and thus (P)t is in Mi. The same reasoning 
shows that any unique curve of motion lies wholly in W or in Mi. 

Similarly we define M2 as the set of non-wandering points 
with respect to Mi, Mz as the set of non-wandering points with 
respect to Mi and so forth. Thus we obtain an ordered set of 
closed sets M, Mu M2, • • • , Mat Afa+i, • • • , Mr. We shall call 
the limiting set, Mr, the set of central motions in analogy with 
the ordinary definition. 

(c). By the customary argument it is possible to prove the 
following property. 



1932-1 CERTAIN DYNAMICAL SYSTEMS 851 

When the time increases and decreases every wandering point 
approaches Mi uniformly. 

Furthermore if P is a point of Mi, it will either stay indefi­
nitely in Mi, or leave Mi. In the latter case it becomes a wander­
ing point and must nevertheless approach Mi later. By the 
usual argument we obtain the following result. The probability 
that an arc of a curve of motion lies inside of an arbitrary neigh-
borhood of Mi approaches unity uniformly as the interval of time 
for such an arc increases indefinitely. 

(d). Let us call, as usual, the limiting points of a curve of mo­
tion for increasing /, œ points, and its limiting points for de­
creasing t, a points. 

The a(o)) limit points A of a motion C are formed of complete 
motions. It is sufficient to show, for a fixed /o>0, that if P is a 
point of A, then there is a point P' of (P)t0 in A ; the property 
is evident for / 0 < 0 . If Q is a point of C, then there are points 
Qri, 0r2, • • • of C lying in (Q)TV (Q)T2, • • • respectively and ap­
proaching P. The points QT1+toi Qr2+t0, • • • of C must then ap­
proach the point set (P)*0. They have a limit point P ' in the set; 
thus P ' is a point of A in (P)*0, as required. 

The limit points of any set of complete motions consist of com­
plete motions. 

The proof is exactly as above except that the points QT1, QT21 

• • • may lie on different motions. Instead of the sequence Mi, 
M2, M3, • • • above, used to define the central motions M r, we 
can use another set as follows. Let us call Ni the set formed by 
the a limit points of all motions on M together with their geo­
metrical limit points. I t is easy to see that Mi 3 Ni. Similarly we 
define N2 on Ni, etc. The limiting set iVs consists of those mo­
tions which belong to their own a limit points, say E, and the 
geometrical limiting points of E. 

(e). Evidently Ns c M r ; are they identical?* The set of cen­
tral points contained in a small molecule a must overlap itself 
in Mr for /o<0 however large t0 and however small a may be. 
Hence there exists in a- a pair of central points P i and Qi, posi­
tions reached by the same point after a certain period of time. 
We shall assume that Qi precedes Pi . 

Choose about P i a neighborhood &i so small that both ai 
and ((ri)tv the corresponding neighborhood of Qi, together with 

* See G. D. Birkhoff and P. A. Smith, loc. cit., p. 354. 
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their limit points shall be contained in a. There exist in ci two 
central points Pi and Ç2 about which we can choose two mole­
cules &2 and (0-2) t2 completely interior to ai, Ç2 preceding P2 . 
Continue in this manner. We can choose the molecules <rk such 
that 

(a) the diameter of Ck converges to zero as k—><*>, and 
(b) the periods of time tk increase indefinitely. 

Then the limiting point L of the molecules is interior to every 
molecule <Tk, and thus the curve of motion C through L for de­
creasing t has the following property (C belongs to Mr). For 
every k, {L)tk has a point in cr^-i; thus L is an a limit point of C 
Moreover, as has been shown above, through L exists a com­
plete curve of motion lying in the set of a limit points of C and 
hence lying in Mr and its own set of a limit points. Therefore we 
may make the following statement. 

The complete motions lying in their own set of a limit points are 
everywhere dense on Mr. I t readily follows that through every cen­
tral point passes a complete motion lying wholly in Mr. 

(f). It must be noticed that if a motion C has a common point 
with its a limit points and its co limit points it does not neces­
sarily belong to either one. However a motion lying in its set of 
a limit points and having a common point with its set of co 
limit points is also part of the latter, and is pseudo-recurrent ac­
cording to the usual definition. 

The pseudo-recurrent motions and the recurrent motions, 
these being defined in the customary way, belong of course to 
Mr. Furthermore, in the present case, it is easy to see that Mi 
and Ni are not equivalent. 

Take on the sphere a simple closed curve* C through an 
equilibrium point P, and let Q be a unique point of Peano on C. 
Let us assume that the motions through Q have as o) limit 
points a periodic motion G, for the motions lying on the right-
hand side, P of course for C, and another periodic motion C2 
for the motions lying on the left-hand side. The point P is the 
only equilibrium point between G and C2. It is easy to see that 
PQ belongs to Mu but not to Nlt 

3. Central Motions on the Sphere. It is well known that if on 

* This example was pointed out by H. Whitney; he also proved independ­
ently that Mr consists of complete motions. 
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the sphere a curve of motion C possesses the two following 
properties : 

(1) C never crosses itself; 
(2) on C there is a point P such that C for indefinitely in­

creasing (or decreasing) / has always points arbitrarily near P ; 
then through P passes a periodic motion. 

It immediately follows from a theorem in §2 that such peri­
odic points P are everywhere dense on the central motions, pro­
vided that we consider only the part of Mr which is not the set 
of equilibrium points. Thus we may make the following state­
ment. 

On a sphere M, the central motions Mr consist of the equilibrium 
points, the periodic motions, and their limit points. 

These limit points form boundaries of regions ; therefore the 
central motions which are not periodic terminate in equilibrium 
points or sets of equilibrium points and are, then, nowhere 
dense on Mr. 

A periodic motion through a point P is the only central mo­
tion issuing from P since two periodic motions cannot intersect, 
and any other central motion, being terminated in equilibrium 
points for decreasing t, has no common points with a periodic 
motion. Moreover if P is a central, non-periodic point, there 
exist periodic points converging to P not lying on H(P) (the 
set of curves of motion through P) ; thus there exist at most two 
different sequences of periodic motions converging to P , and 
thus to a t most two different central motions through P . Evi­
dently the recurrent and pseudo-recurrent motions are the 
equilibrium points and the periodic motions. 

4. Possibility of Choice. Consider a point P and the set of the 
co limit points of all the curves of motions through P , say QW(P). 
If P i is a position reached by P at some later time, we have 

a„(p) D a„(Pi). 

The number of possible choices of P cannot increase-, in par­
ticular, if P and P\ are on the same periodic motion, 

Oc(P) = «„(Pi). 

Consider now a point P on a central motion C on a sphere and 
suppose that, at P , the curve of motion is not unique. Let G be 
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another curve of motion through P . Consider the arc PiQi of 
(P)€ , where Pi lies on C and Qi on G- Since a motion passing 
through PiQi and not passing through P i or Qi cannot be a cen­
tral motion, we define thus a small region PPiQi characteristic 
of the central motion C, or possibly of the two central motions 
C and G. Therefore we have the following result. 

The central motions, except possibly the equilibrium points, from 
which may issue at least one other motion form at most a denumer-
able set. 

If there exist two periodic motions G and G (or any two 
closed curves made up of motions of M) such that the region r 
bounded by G and G does not contain any equilibrium points 
in its interior, it is necessary, in order that some point P of r 
can choose to approach in the future either G or G, that there 
be a unique periodic motion c in r. 

If P is interior to r, c cannot coincide with G or G. Moreover, 
P , as long as it stays on c, will be able to go to any point of r 
at almost any time, more precisely at a time P, t—r^ T^t+T, 
t being arbitrarily chosen and r the period on c. The above con­
dition is also sufficient if c contains a point of Peano. To prove 
the first statement, take a point P 0 of r having two curves c\ 
and C2 asymptotic to G and G as / increases. Of course, the mo­
tion c through Po for decreasing t cannot be asymptotic to 
either G or G. Let us draw two closed bands P i and P2 of width 
e including G and G. Let P i and P2 be the first points on c\ and 
C<L respectively in common with B\ and P2. By cutting the region 
R (R = r — (Pi + P 2 ) + boundary) by the arc P1P0P2, we obtain 
a simply connected region which does not contain any equilib­
rium points; therefore c cannot be interior to this region. If 
we choose e suitably, c has no common points with B\ and B2 

and thus it has a common point Q with P1P0P2. Hence following 
c further, we run into P 0 again, and obtain thereby a periodic 
motion. By the same argument, it is seen that through every 
point of r passes a motion issuing from Po; thus c is the only 
periodic motion in r. 

The motion c cuts r into two regions r\ and r2. Every point on 
c can pass to any point of r, while a point interior to, say, fi, must 
be in B\ after a certain interval of time, and can never reach a 
point of r2. The sufficiency of the condition is not hard to prove. 
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