
1932.] PROPERTY RELATED TO COMPLETENESS 835 

A PROPERTY RELATED TO COMPLETENESS* 
BY J. H. ROBERTS 

In 1926, R. L. Moore presented the following axiom. 

AXIOM 1'. There exists a countable sequence Gi, G2, Gz, • • • 
such that (a) for each n, Gn is a collection of domains covering 
space, (b) if P± and P2 are distinct points of a domain R, there 
exists an integer d such that if n>d and Kn is a domain containing 
Pi and belonging to Gn, then ~Kn is a subset of R — P2, and (c) if 
Ri, R2, Rzy • • • is a sequence of domains such that, for each n, Rn 

belongs to Gn and such that, for each n, Ri, R2, • • • , Rn have a 
point in common, then there exists a point common to all the point 
sets Ri, R2, Rz, • • • .f 

Moore has given an example of a non-metric space in which 
his axiom 1' holds true. He raised the question as to whether or 
not a metric space in which his axiom 1 ' holds true is complete. $ 
The present paper answers this question in the affirmative.! 

THEOREM. A metric space S in which axiom 1' holds true is 
complete. 

PROOF. Let ô(x, y) be a distance function defined over the 
space S. Let P be any point of S and let n be any positive in­
teger. Either (1) there is a domain of the set Gn which contains 
every point y such that d(P, y) ^ 2, or (2) there exists a greatest 
number k (k^2) such that if r < k, then there exists a domain of 
the set Gn containing every point y such that d(P, y)Sr. Let 

* Presented to the Society, April 11, 1931. 
t This Bulletin, vol. 33 (1927), pp. 141. 
% A space S is said to be complete if there exists a definition of distance such 

that every sequence of points satisfying the Cauchy condition has a limit point. 
A sequence of points Pi, Pi, • • • , in a metric space is said to satisfy the Cauchy 
condition with respect to the distance function ô if, for every positive number e, 
there exists an integer n such that Ô(Pn, Pk) <e if k >n. 

§ The present result was obtained about September 1, 1930, and was re­
ported to Professor Moore at that time. I purposely delayed publishing the 
paper in order that it might not appear in advance of the publication of his 
book Foundations of Point Set Theory. Later in the fall of 1930 Leo Zippin ob­
tained a theorem which, with other theorems in the literature, yields the result of 
this paper. 
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2w denote 2 or k according as the first or second condition 
holds true. Let C(P, n) denote the set of all points y such that 
ô(P, y) ^w. The number w will be called the radius of C(P, n). 

NOTATION. If x, y, and Q are points, let f(x, y; Q) denote the 
maximum of the two quantities ö(x, Q) and d(y, Q). If n is a 
positive integer, let r(Q, n) denote the radius of C(Q, n). 

Let x and y be any two points. We shall define a function 
dn(x, y). If there exists no point P such that C(P, n) contains 
both x and y, then dn(x, y) = l. If there is a point P such that 
C(P, n) contains both x and y, then let epn(xy y) be defined as 
[f(x, y\ P)/r(P, n)]lls and let dn(x, y) be the minimum or 
greatest lower bound of the numbers epn(x, y), where P can be 
any point such that C(P, n) contains both x and y. A function 
p(x, y) is now defined as follows: 

00 

(1) p(a, y) = Ô(x, y) + 2 X ( x , y)/2». 
n = l 

I t is to be shown that p(x, y) is a distance function with respect 
to which S is complete. Clearly p(x, y) =p(y, x) and p(x, x) =0 . 
If p(x, y) =0 , then ô(x, y) = 0 and x = y. Suppose that the point x 
is a limit point of the point set M. Let e be any positive num­
ber. Then there exists a positive integer n such that l / 2 n < e / 3 . 
There exists a point 3/ of M such that ô(x, 3/) <r(x, i) and that 
[ô(x, y)/r(x, f )]1 / 3<e/3 for every integer i, (i^n). Then since 
d;(x, y) ^ [S(x, y)/r(x, i)]1/s it follows that ^^(JC, y) <e/3, (i^n). 
Hence 

n «3 

P(x, y) S S(x, y)+T, di{x, y)/2i + £ l /2{ 

< e/3 + e/3 + e/3 = e. 

Thus if x is a limit point of M, then for every positive number e 
there is a point y of M such that p(x, y) <e. lî x is not a limit 
point of M, then p(x, M) ^ô(x, ikf)>0, and there exists a posi­
tive number e such that, if y is any point of M, then p(#, 3/) >e . 

Let x, y, and 2 be any three points of S. It is to be shown that 
p(x, y) +p(y, z) ^p(x, z). It is sufficient to show that for every n, 
dn(x, y)+dn(y, z)^dn(x, z). Suppose that for some n we have 
dn(x, y)+dn(y, z) <dn(x, z), where x, y and z are distinct points. 
From the definition of the function dn it follows that there exist 
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points P and Q such that C(P, n) contains x and y, C(Q, n) 
contains y and z, and 

(2) —77;—r~ + —T~—r- < d»(x> z> • 
- r(P, n) 

)T* , Y Ay, *; G)T" ^ . , 

Let 4 denote dn(#, z). Let / and f denote, respectively, the first 
and second terms of the left member of (2). We next prove that 

(3) A* S 
.r(P, w) J 

This is obvious if z is not in C(P, n) [that is, d(z, P) ^ r ( P , w) ] 
since A ^1. Let us suppose that 2 is in C(P, w), and also that 
8(s, P) g S(#, P ) . Then dn(*, s) g [ô(x, P)/r(P, w)]1/3, which con­
tradicts (2). Hence 6(s, P )>5(* , P ) . Then [5(s, P)/r(P, n)]1** 
is one of the quantities of which dn(x, z)> that is, A, is a lower 
bound. Hence in any case (3) is established. Similarly 

8(x, 0) 
(4) As^A^iL. 

r(Q, n) 
The following two inequalities obviously hold, since ô is a dis» 
tance function: 

(5) 5(2, P) f£ 5(2, Q) + S(Q, y) + Ô(y, P), 

(6) 8(x, Q) g S(x, P) + S(P, y) + 5(y, Q). 

From the definition of l and of r, and the fact that r <A —I, the 
following hold true, where Vi = r(P, n) and vt = r(Q, n) : 

ô(y, Q) &(js, Q) 
(A - ty ^ -^i¥L, {A - ty ^ -±mL • 

If now (5) is divided by Vi and substitutions are made from 
(3) and (7) we have 

2(A - t)*v, 
(8) As S — — + t3 • 

Likewise if (6) is divided by »2 we have after substituting 
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2thi 
(9) A* ^ + (A - 0* • 

1)2 

Now (8) and (9) cannot both hold under the conditions here 
obtaining, namely 1 ^ ^ 4 > / > 0 , fli>0, ZJ2>0. For from (9) we 
get vxlv^ [A3-(A -ty]/2t\ from which, by (8), we find 

(10) 3 ^ 4 - 3AH2 + 6Atz - 3/4 g 0. 

Now set A =kt. Then k>l, and we have, after dividing by /4, 
3k* — 3k2 + 6k — 3^Q. This is obviously false. Hence our sup­
position has led to a contradiction, whence it follows that for 
every n, dn(x, y)+dn(y, z) ^dn(x, z). We can now say that the 
function p(#, y) is a distance function. 

The problem remains to show that with respect to this defini­
tion of distance the space 5 is complete. Let Pi, P2 , Pz, * * * 
denote any sequence of points satisfying the Cauchy condition 
with respect to the distance function p(x, y). Let n be any posi­
tive integer and let mn be an integer such that p(P/t, Ph) < l / 2 n + 2 

if h, k^mn. Then dn(Ph, Pk)/2
n<l/2n+\ whence dn(Ph, Pk) 

< l / 4 if h, k^mn. There exists an integer a (a^mn) such that 
for every b, (b^mn), S(Pmn, Pb) <2ô(Pmn, Pa). Now we have 
dn(Pmn, Pa) < 1/4. Hence there exists a point Q such that 

L f (Ö, ») J 4 a n L r(Q, ») J 4 ' 

Then 5(Pm„, (?)<K<2, »)/64, S(Pa, 0 < r ( Ç , n)/64, and thus 
ô(Pmn, Pa)<K<2, *)/32. Then 

5(P6, Ö) ^ S(P&, P m J + 8(Pmn, Q) ^ 2b(Pmn, Pa) + ô(Pmn, Q) 

r(Q, n) r(Q, n) 
< —77— + —77— < f (ö, »)• 

16 64 
Hence for every b, (b ^ mn), the pointP& belongs to C(Q, n), which 
in turn is a subset of a domain of the set Gn. Let Hn be the set 
of all points P& with b^mn, and let P n be a domain of the set Gn 

containing Hn. By (c) of axiom 1' there exists a point P common 
to all the sets Rlt R2, JR3, • • • . I t is easy to show that P is a 
sequential limit point of the sequence Pi, P2 , P3, • • • . Thus the 
space S is complete with respect to the distance function p(x, y). 

D U K E UNIVERSITY 


